4 resultados para Quasi-Static

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the in-plane bias magnetic field acting on a flat circular magnetic dot is smaller than the saturation field, there are two stable competing magnetization configurations of the dot: the vortex and the quasi-uniform (C-state). We measured microwave absorption properties in an array of non-interacting permalloy dots in the frequency range 1-8 GHz when the in-plane bias magnetic field was varied in the region of the dot magnetization state bi-stability. We found that the microwave absorption properties in the vortex and quasi-uniform stable states are substantially different, so that switching between these states in a fixed bias field can be used for the development of reconfigurable microwave magnetic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.