11 resultados para Professorial Power
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
In this paper we analyze the valuation of options stemming from the flexibility in an Integrated Gasification Combined Cycle (IGCC) Power Plant. First we use as a base case the opportunity to invest in a Natural Gas Combined Cycle (NGCC) Power Plant, deriving the optimal investment rule as a function of fuel price and the remaining life of the right to invest. Additionally, the analytical solution for a perpetual option is obtained. Second, the valuation of an operating IGCC Power Plant is studied, with switching costs between states and a choice of the best operation mode. The valuation of this plant serves as a base to obtain the value of the option to delay an investment of this type. Finally, we derive the value of an opportunity to invest either in a NGCC or IGCC Power Plant, that is, to choose between an inflexible and a flexible technology, respectively. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for the fuel prices. Basic parameter values refer to an actual IGCC power plant currently in operation.
Resumo:
Coal-fired power plants may enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. Still, this advantage may erode or even turn into disadvantage depending on CO2 emission allowance price. This price will presumably rise in both the Kyoto Protocol commitment period (2008-2012) and the first post-Kyoto years. Thus, in a carbon-constrained environment, coal plants face financial risks arising in their profit margins, which in turn hinge on their so-called "clean dark spread". These risks are further reinforced when the price of the output electricity is determined by natural gas-fired plants' marginal costs, which differ from coal plants' costs. We aim to assess the risks in coal plants' margins. We adopt parameter values estimated from empirical data. These in turn are derived from natural gas and electricity markets alongside the EU ETS market where emission allowances are traded. Monte Carlo simulation allows to compute the expected value and risk profile of coal-based electricity generation. We focus on the clean dark spread in both time periods under different future scenarios in the allowance market. Specifically, bottom 5% and 10% percentiles are derived. According to our results, certain future paths of the allowance price may impose significant risks on the clean dark spread obtained by coal plants.
Resumo:
Published as an article in: Journal of Regulatory Economics, 2010, vol. 37, issue 1, pages 42-69.
Resumo:
In a two-stage delegation game model with Nash bargaining between a manager and an owner, an equivalence result is found between this game and Fershtman and Judd's strategic delegation game (Fershtman and Judd, 1987). Interestingly, although both games are equivalent in terms of profits under certain conditions, managers obtain greater rewards in the bargaining game. This results in a redistribution of profits between owners and managers.
Resumo:
The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a sliding mode control for variable speed wind turbine that incorporates a doubly fed induction generator is described. The electrical system incorporates a wound rotor induction machine with back-to-back three phase power converter bridges between its rotor and the grid. In the presented design the so-called vector control theory is applied, in order to simplify the electrical equations. The proposed control scheme uses stator flux-oriented vector control for the rotor side converter bridge control and grid voltage vector control for the grid side converter bridge control. The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand, that the proposed controller provides high-performance dynamic characteristics, and on the other hand, that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
This paper presents the construction, mathematical modeling and testing of a scaled universal hydraulic Power Take-Off (PTO) device for Wave Energy Converters (WECs). A specific prototype and test bench were designed and built to carry out the tests. The results obtained from these tests were used to adjust an in-house mathematical model. The PTO was initially designed to be coupled to a scaled wave energy capture device with a low speed and high torque oscillating motion and high power fluctuations. Any Energy Capture Device (ECD) that fulfils these requirements can be coupled to this PTO, provided that its scale is adequately defined depending on the rated power of the full scale prototype. The initial calibration included estimation of the pressure drops in the different components, the pressurization time of the oil inside the hydraulic cylinders and the volumetric efficiency of the complete circuit. Since the overall efficiency measured during the tests ranged from 0.69 to 0.8 and the dynamic performance of the PTO was satisfactory, the results are really promising and it is believed that this solution might prove effective in real devices.
Resumo:
POWERENG 2011
Resumo:
EuroPES 2009
Resumo:
4 p.
Resumo:
23 p.
Resumo:
261 p.