3 resultados para Process control -- Data processing

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60- mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality–lost values imputation, probes quality, data smoothing and intraclass variability filtering–the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radar services are occasionally affected by wind farms. This paper presents a comprehensive description of the effects that a wind farm may cause on the different radar services, and it compiles a review of the recent research results regarding the mitigation techniques to minimize this impact. Mitigation techniques to be applied at the wind farm and on the radar systems are described. The development of thorough impact studies before the wind farm is installed is presented as the best way to analyze in advance the potential for interference, and subsequently identify the possible solutions to allow the coexistence of wind farms and radar services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spurious oscillations are one of the principal issues faced by microwave and RF circuit designers. The rigorous detection of instabilities or the characterization of measured spurious oscillations is still an ongoing challenge. This project aims to create a new stability analysis CAD program that tackles this chal- lenge. Multiple Input Multiple Output (MIMO) pole-zero identification analysis is introduced on the program as a way to create new methods to automate the stability analysis process and to help designers comprehend the obtained results and prevent incorrect interpretations. The MIMO nature of the analysis contributes to eliminate possible controllability and observability losses and helps differentiate mathematical and physical quasi-cancellations, products of overmodeling. The created program reads Single Input Single Output (SISO) or MIMO frequency response data, and determines the corresponding continuous transfer functions with Vector Fitting. Once the transfer function is calculated, the corresponding pole/zero diagram is mapped enabling the designers to analyze the stability of an amplifier. Three data processing methods are introduced, two of which consist of pole/zero elimina- tions and the latter one on determining the critical nodes of an amplifier. The first pole/zero elimination method is based on eliminating non resonant poles, whilst the second method eliminates the poles with small residue by assuming that their effect on the dynamics of a system is small or non-existent. The critical node detection is also based on the residues; the node at which the effect of a pole on the dynamics is highest is defined as the critical node. In order to evaluate and check the efficiency of the created program, it is compared via examples with another existing commercial stability analysis tool (STAN tool). In this report, the newly created tool is proved to be as rigorous as STAN for detecting instabilities. Additionally, it is determined that the MIMO analysis is a very profitable addition to stability analysis, since it helps to eliminate possible problems of loss of controllability, observability and overmodeling.