4 resultados para Primary Cell Culture

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] Diabetic foot ulcers (DFUs) represent a major clinical challenge in the ageing population. To address this problem, rhEGF-loaded Poly-Lactic-co-Glycolic-Acid (PLGA)-Alginate microspheres (MS) were prepared by a modified w/o/w-doubleemulsion/ solvent evaporation method. Different formulations were evaluated with the aim of optimising MSs properties by adding NaCl to the surfactant solution and/or the solvent removal phase and adding alginate as a second polymer. The characterization of the developed MS showed that alginate incorporation increased the encapsulation efficiency (EE) and NaCl besides increasing the EE also became the particle surface smooth and regular. Once the MS were optimised, the target loading of rhEGF was increased to 1% (PLGA-Alginate MS), and particles were sterilised by gamma radiation to provide the correct dosage for in vivo studies. In vitro cell culture assays demonstrated that neither the microencapsulation nor the sterilisation process affected rhEGF bioactivity or rhEGF wound contraction. Finally, the MS were evaluated in vivo for treatment of the full-thickness wound model in diabetised Wistar rats. rhEGF MS treated animals showed a statistically significant decrease of the wound area by days 7 and 11, a complete re-epithelisation by day 11 and an earlier resolution of the inflammatory process. Overall, these findings demonstrate the promising potential of rhEGF-loaded MS (PLGA-Alginate MS) to promote faster and more effective wound healing, and suggest its possible application in DFU treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system.