10 resultados para Power Sensitivity Model

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drift appears to be crucial to study the stability properties of Nash equilibria in a component specifying different out-of-equilibrium behaviour. We propose a new microeconomic model of drift to be added to the learning process by which agents find their way to equilibrium. A key feature of the model is the sensitivity of the noisy agent to the proportion of agents in his player population playing the same strategy as his current one. We show that, 1. Perturbed Payoff-Positive and PayoffMonotone selection dynamics are capable of stabilizing pure non strict Nash equilibria in either singleton or nonsingleton component of equilibria; 2. The model is relevant to understand the role of drift in the behaviour observed in the laboratory for the Ultimatum Game and for predicting outcomes that can be experimentally tested. Hence, the selection dynamics model perturbed with the proposed drift may be seen as well as a new learning tool to understand observed behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a two-stage delegation game model with Nash bargaining between a manager and an owner, an equivalence result is found between this game and Fershtman and Judd's strategic delegation game (Fershtman and Judd, 1987). Interestingly, although both games are equivalent in terms of profits under certain conditions, managers obtain greater rewards in the bargaining game. This results in a redistribution of profits between owners and managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rating enables the information asymmetry existing in the issuer-investor relationship to be reduced, particularly for issues with a high degree of complexity, as is the case of securitizations. However, there may be a serious conflict of interest between the issuer’s choice and remuneration of the agency and the credit rating awarded, resulting in lower quality and information power of the published rating. In this paper, we propose an explicative model of the number of ratings requested, by analyzing the relevance of the number of ratings to measure the reliability, where multirating is shown to be associated to the quality, size, liquidity and the degree of information asymmetry relating to the issue. Thus, we consider that the regulatory changes that foster the widespread publication of simultaneous ratings could help to alleviate the problem of rating model arbitrage and the crisis of confidence in credit ratings in general and in the securitization issues, in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the construction, mathematical modeling and testing of a scaled universal hydraulic Power Take-Off (PTO) device for Wave Energy Converters (WECs). A specific prototype and test bench were designed and built to carry out the tests. The results obtained from these tests were used to adjust an in-house mathematical model. The PTO was initially designed to be coupled to a scaled wave energy capture device with a low speed and high torque oscillating motion and high power fluctuations. Any Energy Capture Device (ECD) that fulfils these requirements can be coupled to this PTO, provided that its scale is adequately defined depending on the rated power of the full scale prototype. The initial calibration included estimation of the pressure drops in the different components, the pressurization time of the oil inside the hydraulic cylinders and the volumetric efficiency of the complete circuit. Since the overall efficiency measured during the tests ranged from 0.69 to 0.8 and the dynamic performance of the PTO was satisfactory, the results are really promising and it is believed that this solution might prove effective in real devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(EuroPES 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

31 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main problems of fusion energy is to achieve longer pulse duration by avoiding the premature reaction decay due to plasma instabilities. The control of the plasma inductance arises as an essential tool for the successful operation of tokamak fusion reactors in order to overcome stability issues as well as the new challenges specific to advanced scenarios operation. In this sense, given that advanced tokamaks will suffer from limited power available from noninductive current drive actuators, the transformer primary coil could assist in reducing the power requirements of the noninductive current drive sources needed for current profile control. Therefore, tokamak operation may benefit from advanced control laws beyond the traditionally used PID schemes by reducing instabilities while guaranteeing the tokamak integrity. In this paper, a novel model predictive control (MPC) scheme has been developed and successfully employed to optimize both current and internal inductance of the plasma, which influences the L-H transition timing, the density peaking, and pedestal pressure. Results show that the internal inductance and current profiles can be adequately controlled while maintaining the minimal control action required in tokamak operation.