2 resultados para Positive development
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.
Resumo:
Introduction The identification of the genetic risk factors that could discriminate non-thrombotic from thrombotic antiphospholipid antibodies (aPLA) carriers will improve prognosis of these patients. Several human studies have shown the presence of aPLAs associated with atherosclerotic plaque, which is a known risk factor for thrombosis. Hence, in order to determine the implication of atherosclerosis in the risk of developing thrombosis in aPLA positive patients, we performed a genetic association study with 3 candidate genes, APOH, LDLR and PCSK9. Material & Methods For genetic association study we analyzed 190 aPLA carriers -100 with non-thrombotic events and 90 with thrombotic events-and 557 healthy controls. Analyses were performed by chi(2) test and were corrected by false discovery rate. To evaluate the functional implication of the newly established susceptibility loci, we performed expression analyses in 86 aPLA carrier individuals (43 with thrombotic manifestations and 43 without it) and in 45 healthy controls. Results Our results revealed significant associations after correction in SNPs located in LDLR gene with aPLA carriers and thrombotic aPLA carriers, when compared with healthy controls. The most significant association in LDLR gene was found between SNP rs129083082 and aPLA carriers in recessive model (adjusted P-value = 2.55 x 10(-3); OR = 2.18; 95% CI = 1.49-3.21). Furthermore, our work detected significant allelic association after correction between thrombotic aPLA carriers and healthy controls in SNP rs562556 located in PCSK9 gene (adjusted P-value = 1.03 x 10(-2); OR = 1.60; 95% CI = 1.24-2.06). Expression level study showed significantly decreased expression level of LDLR gene in aPLA carriers (P-value < 0.0001; 95% CI 0.16-2.10; SE 0.38-1.27) in comparison to the control group. Discussion Our work has identified LDLR gene as a new susceptibility gene associated with the development of thrombosis in aPLA carriers, describing for the first time the deregulation of LDLR expression in individuals with aPLAs. Besides, thrombotic aPLA carriers also showed significant association with PCSK9 gene, a regulator of LDLR plasma levels. These results highlight the importance of atherosclerotic processes in the development of thrombosis in patients with aPLA.