4 resultados para Perturbations humaines
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Binmore and Samuelson (1999) have shown that perturbations (drift) are crucial to study the stability properties of Nash equilibria. We contribute to this literature by providing a behavioural foundation for models of evolutionary drift. In particular, this article introduces a microeconomic model of drift based on the similarity theory developed by Tversky (1977), Kahneman and Tversky (1979) and Rubinstein (1988),(1998). An innovation with respect to those works is that we deal with similarity relations that are derived from the perception that each agent has about how well he is playing the game. In addition, the similarity relations are adapted to a dynamic setting. We obtain different models of drift depending on how we model the agent´s assessment of his behaviour in the game. The examples of the ultimatum game and the chain-store game are used to show the conditions for each model to stabilize elements in the component of Nash equilibria that are not subgame- perfect. It is also shown how some models approximate the laboratory data about those games while others match the data.
Resumo:
19 p.
Resumo:
681 p.
Resumo:
Hartle's model provides the most widely used analytic framework to describe isolated compact bodies rotating slowly in equilibrium up to second order in perturbations in the context of General Relativity. Apart from some explicit assumptions, there are some implicit, like the "continuity" of the functions in the perturbed metric across the surface of the body. In this work we sketch the basics for the analysis of the second order problem using the modern theory of perturbed matchings. In particular, the result we present is that when the energy density of the fluid in the static configuration does not vanish at the boundary, one of the functions of the second order perturbation in the setting of the original work by Hartle is not continuous. This discrepancy affects the calculation of the change in mass of the rotating star with respect to the static configuration needed to keep the central energy density unchanged.