6 resultados para Path feasibility
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Published as an article in: Journal of Environmental Economics and Management, 2005, vol. 50, issue 2, pages 387-407.
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
We study quantum state tomography, entanglement detection and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of the following key elements: propagation channels, beam splitters, linear amplifiers and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyse our techniques with numerical examples and experimental data, and compare them with the scheme developed in Eichler et al (2011 Phys. Rev. Lett. 106 220503; 2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.
Resumo:
Smart and mobile environments require seamless connections. However, due to the frequent process of ''discovery'' and disconnection of mobile devices while data interchange is happening, wireless connections are often interrupted. To minimize this drawback, a protocol that enables an easy and fast synchronization is crucial. Bearing this in mind, Bluetooth technology appears to be a suitable solution to carry on such connections due to the discovery and pairing capabilities it provides. Nonetheless, the time and energy spent when several devices are being discovered and used at the same time still needs to be managed properly. It is essential that this process of discovery takes as little time and energy as possible. In addition to this, it is believed that the performance of the communications is not constant when the transmission speeds and throughput increase, but this has not been proved formally. Therefore, the purpose of this project is twofold: Firstly, to design and build a framework-system capable of performing controlled Bluetooth device discovery, pairing and communications. Secondly, to analyze and test the scalability and performance of the \emph{classic} Bluetooth standard under different scenarios and with various sensors and devices using the framework developed. To achieve the first goal, a generic Bluetooth platform will be used to control the test conditions and to form a ubiquitous wireless system connected to an Android Smartphone. For the latter goal, various stress-tests will be carried on to measure the consumption rate of battery life as well as the quality of the communications between the devices involved.
Resumo:
29 p.
Resumo:
An extensive range of conventional, vane-type, passive vortex generators (VGs) are in use for successful applications of flow separation control. In most cases, the VG height is designed with the same thickness as the local boundary layer at the VG position. However, in some applications, these conventional VGs may produce excess residual drag. The so-called low-profile VGs can reduce the parasitic drag associated to this kind of passive control devices. As suggested by many authors, low-profile VGs can provide enough momentum transfer over a region several times their own height for effective flow-separation control with much lower drag. The main objective of this work is to study the variation of the path and the development of the primary vortex generated by a rectangular VG mounted on a flat plate with five different device heights h = delta, h(1) = 0.8 delta, h(2) = 0.6 delta, h(3) = 0.4 delta and h(4) = 0.2 delta, where delta is the local boundary layer thickness. For this purpose, computational simulations have been carried out at Reynolds number Re = 1350 based on the height of the conventional VG h = 0.25m with the angle of attack of the vane to the oncoming flow beta = 18.5 degrees. The results show that the VG scaling significantly affects the vortex trajectory and the peak vorticity generated by the primary vortex.