6 resultados para Nonlinear Systems

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by an SEIR (susceptible plus infected plus infectious plus removed populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes the contacts among susceptible and infected more difficult. The vaccination strategy is based on a continuous-time nonlinear control law synthesised via an exact feedback input-output linearization approach. An observer is incorporated into the control scheme to provide online estimates for the susceptible and infected populations in the case when their values are not available from online measurement but they are necessary to implement the control law. The vaccination control is generated based on the information provided by the observer. The control objective is to asymptotically eradicate the infection from the population so that the removed-by-immunity population asymptotically tracks the whole one without precise knowledge of the partial populations. The model positivity, the eradication of the infection under feedback vaccination laws and the stability properties as well as the asymptotic convergence of the estimation errors to zero as time tends to infinity are investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

19 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.