12 resultados para Neural Signal

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]La fibrilación ventricular (VF) es el primer ritmo registrado en el 40\,\% de las muertes súbitas por paro cardiorrespiratorio extrahospitalario (PCRE). El único tratamiento eficaz para la FV es la desfibrilación mediante una descarga eléctrica. Fuera del hospital, la descarga se administra mediante un desfibrilador externo automático (DEA), que previamente analiza el electrocardiograma (ECG) del paciente y comprueba si presenta un ritmo desfibrilable. La supervivencia en un caso de PCRE depende fundamentalmente de dos factores: la desfibrilación temprana y la resucitación cardiopulmonar (RCP) temprana, que prolonga la FV y por lo tanto la oportunidad de desfibrilación. Para un correcto análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que, debido a las compresiones torácicas, la RCP introduce artefactos en el ECG. Desafortunadamente, la interrupción de la RCP afecta negativamente al éxito en la desfibrilación. En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años. Los DEA, que originalmente se diseñaron para pacientes adultos, deben discriminar de forma precisa las arritmias pediátricas para que su uso en niños sea seguro. Varios DEAs se han adaptado para uso pediátrico, bien demostrando la precisión de los algoritmos para adultos con arritmias pediátricas, o bien mediante algoritmos específicos para arritmias pediátricas. Esta tesis presenta un nuevo algoritmo DEA diseñado conjuntamente para pacientes adultos y pediátricos. El algoritmo se ha probado exhaustivamente en bases de datos acordes a los requisitos de la American Heart Association (AHA), y en registros de resucitación con y sin artefacto RCP. El trabajo comenzó con una larga fase experimental en la que se recopilaron y clasificaron retrospectivamente un total de 1090 ritmos pediátricos. Además, se revisó una base de arritmias de adultos y se añadieron 928 nuevos ritmos de adultos. La base de datos final contiene 2782 registros, 1270 se usaron para diseñar el algoritmo y 1512 para validarlo. A continuación, se diseñó un nuevo algoritmo DEA compuesto de cuatro subalgoritmos. Estos subalgoritmos están basados en un conjunto de nuevos parámetros para la detección de arritmias, calculados en diversos dominios de la señal, como el tiempo, la frecuencia, la pendiente o la función de autocorrelación. El algoritmo cumple las exigencias de la AHA para la detección de ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos como en pediátricos. El trabajo concluyó con el análisis del comportamiento del algoritmo con episodios reales de resucitación. En los ritmos que no contenían artefacto RCP se cumplieron las exigencias de la AHA. Posteriormente, se estudió la precisión del algoritmo durante las compresiones torácicas, antes y después de filtrar el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo método desarrollado a lo largo de la tesis. Los ritmos desfibrilables se detectaron de forma precisa tras el filtrado, los no-desfibrilables sin embargo no.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known in the scientific community that some remote sensing instruments assume that sample volumes present homogeneous conditions within a defined meteorological profile. At complex topographic sites and under extreme meteorological conditions, this assumption may be fallible depending on the site, and it is more likely to fail in the lower layers of the atmosphere. This piece of work tests the homogeneity of the wind field over a boundary layer wind profiler radar located in complex terrain on the coast under different meteorological conditions. The results reveal the qualitative importance of being aware of deviations in this homogeneity assumption and evaluate its effect on the final product. Patterns of behavior in data have been identified in order to simplify the analysis of the complex signal registered. The quality information obtained from the homogeneity study under different meteorological conditions provides useful indicators for the best alternatives the system can offer to build wind profiles. Finally, the results are also to be considered in order to integrate them in a quality algorithm implemented at the product level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wished to replicate evidence that an experimental paradigm of speech illusions is associated with psychotic experiences. Fifty-four patients with a first episode of psychosis (FEP) and 150 healthy subjects were examined in an experimental paradigm assessing the presence of speech illusion in neutral white noise. Socio-demographic, cognitive function and family history data were collected. The Positive and Negative Syndrome Scale (PANSS) was administered in the patient group and the Structured Interview for Schizotypy-Revised (SIS-R), and the Community Assessment of Psychic Experiences (CAPE) in the control group. Patients had a much higher rate of speech illusions (33.3% versus 8.7%, ORadjusted: 5.1, 95% CI: 2.3-11.5), which was only partly explained by differences in IQ (ORadjusted: 3.4, 95% CI: 1.4-8.3). Differences were particularly marked for signals in random noise that were perceived as affectively salient (ORadjusted: 9.7, 95% CI: 1.8-53.9). Speech illusion tended to be associated with positive symptoms in patients (ORadjusted: 3.3, 95% CI: 0.9-11.6), particularly affectively salient illusions (ORadjusted: 8.3, 95% CI: 0.7-100.3). In controls, speech illusions were not associated with positive schizotypy (ORadjusted: 1.1, 95% CI: 0.3-3.4) or self-reported psychotic experiences (ORadjusted: 1.4, 95% CI: 0.4-4.6). Experimental paradigms indexing the tendency to detect affectively salient signals in noise may be used to identify liability to psychosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known in the scientific community that some remote sensing instruments assume that sample volumes present homogeneous conditions within a defined meteorological profile. At complex topographic sites and under extreme meteorological conditions, this assumption may be fallible depending on the site, and it is more likely to fail in the lower layers of the atmosphere. This piece of work tests the homogeneity of the wind field over a boundary layer wind profiler radar located in complex terrain on the coast under different meteorological conditions. The results reveal the qualitative importance of being aware of deviations in this homogeneity assumption and evaluate its effect on the final product. Patterns of behavior in data have been identified in order to simplify the analysis of the complex signal registered. The quality information obtained from the homogeneity study under different meteorological conditions provides useful indicators for the best alternatives the system can offer to build wind profiles. Finally, the results are also to be considered in order to integrate them in a quality algorithm implemented at the product level.