4 resultados para NEIGHBOR MATRICES
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
El proyecto tiene como objetivo el estudio de las propiedades más importantes de las matrices doblemente estocásticas y algunas aplicaciones. Se comienza analizando algunas propiedades espectrales de las matrices no negativas de las que aquellas son un caso particular y se demuestra, en particular, el Teorema de Perron-Frobenius. Posteriormente se discute en detalle la relación entre las matrices doblemente estocásticas y la mayorización de vectores reales y el importante teorema de Birkhoff. El proyecto finaliza desarrollando algunas aplicaciones de este tipo de matrices.
Resumo:
Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.
Resumo:
221 p.+ anexos
Resumo:
[eus] Gradu amaierako lan honetan ausazko matrizeen teoriari, RMT-ri, buruzko sarrera orokor bat egiten da ondoren aplikazio fisiko bat emateko. Teoriaren aplikazioa egiteko Kaos kuantikoa deritzon fisikaren arloa erabiliko da. Lehenik eta behin, RMT-ren kontzeptu batzuk azalduko dira helburutzat lehen auzokideen distantziaren distribuzioaren espresio lortzea izanik. Izan ere, distribuzio honek erakutsiko baititu Kaosak kuantikoki uzten dituen aztarnak. Bigarren kapituluan, aplikazio fisikoa azalduko da. Lehenengo Kaosean RMT nola aplikatzen den ikusiko da, ondoren adibide batzuen bidez argituz, eremu magnetiko batean dagoen hidrogeno atomoa eta billar kuantikoak izenarekin ezagutzen diren sistemak, batik bat.