14 resultados para Motion-based input
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.
Resumo:
This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by an SEIR (susceptible plus infected plus infectious plus removed populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes the contacts among susceptible and infected more difficult. The vaccination strategy is based on a continuous-time nonlinear control law synthesised via an exact feedback input-output linearization approach. An observer is incorporated into the control scheme to provide online estimates for the susceptible and infected populations in the case when their values are not available from online measurement but they are necessary to implement the control law. The vaccination control is generated based on the information provided by the observer. The control objective is to asymptotically eradicate the infection from the population so that the removed-by-immunity population asymptotically tracks the whole one without precise knowledge of the partial populations. The model positivity, the eradication of the infection under feedback vaccination laws and the stability properties as well as the asymptotic convergence of the estimation errors to zero as time tends to infinity are investigated.
Resumo:
[EN]Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
Computer vision algorithms that use color information require color constant images to operate correctly. Color constancy of the images is usually achieved in two steps: first the illuminant is detected and then image is transformed with the chromatic adaptation transform ( CAT). Existing CAT methods use a single transformation matrix for all the colors of the input image. The method proposed in this paper requires multiple corresponding color pairs between source and target illuminants given by patches of the Macbeth color checker. It uses Delaunay triangulation to divide the color gamut of the input image into small triangles. Each color of the input image is associated with the triangle containing the color point and transformed with a full linear model associated with the triangle. Full linear model is used because diagonal models are known to be inaccurate if channel color matching functions do not have narrow peaks. Objective evaluation showed that the proposed method outperforms existing CAT methods by more than 21%; that is, it performs statistically significantly better than other existing methods.
Resumo:
This paper deals with the economics of gasification facilities in general and IGCC power plants in particular. Regarding the prospects of these systems, passing the technological test is one thing, passing the economic test can be quite another. In this respect, traditional valuations assume constant input and/or output prices. Since this is hardly realistic, we allow for uncertainty in prices. We naturally look at the markets where many of the products involved are regularly traded. Futures markets on commodities are particularly useful for valuing uncertain future cash flows. Thus, revenues and variable costs can be assessed by means of sound financial concepts and actual market data. On the other hand, these complex systems provide a number of flexibility options (e.g., to choose among several inputs, outputs, modes of operation, etc.). Typically, flexibility contributes significantly to the overall value of real assets. Indeed, maximization of the asset value requires the optimal exercise of any flexibility option available. Yet the economic value of flexibility is elusive, the more so under (price) uncertainty. And the right choice of input fuels and/or output products is a main concern for the facility managers. As a particular application, we deal with the valuation of input flexibility. We follow the Real Options approach. In addition to economic variables, we also address technical and environmental issues such as energy efficiency, utility performance characteristics and emissions (note that carbon constraints are looming). Lastly, a brief introduction to some stochastic processes suitable for valuation purposes is provided.
Resumo:
240 p.
Resumo:
Spurious oscillations are one of the principal issues faced by microwave and RF circuit designers. The rigorous detection of instabilities or the characterization of measured spurious oscillations is still an ongoing challenge. This project aims to create a new stability analysis CAD program that tackles this chal- lenge. Multiple Input Multiple Output (MIMO) pole-zero identification analysis is introduced on the program as a way to create new methods to automate the stability analysis process and to help designers comprehend the obtained results and prevent incorrect interpretations. The MIMO nature of the analysis contributes to eliminate possible controllability and observability losses and helps differentiate mathematical and physical quasi-cancellations, products of overmodeling. The created program reads Single Input Single Output (SISO) or MIMO frequency response data, and determines the corresponding continuous transfer functions with Vector Fitting. Once the transfer function is calculated, the corresponding pole/zero diagram is mapped enabling the designers to analyze the stability of an amplifier. Three data processing methods are introduced, two of which consist of pole/zero elimina- tions and the latter one on determining the critical nodes of an amplifier. The first pole/zero elimination method is based on eliminating non resonant poles, whilst the second method eliminates the poles with small residue by assuming that their effect on the dynamics of a system is small or non-existent. The critical node detection is also based on the residues; the node at which the effect of a pole on the dynamics is highest is defined as the critical node. In order to evaluate and check the efficiency of the created program, it is compared via examples with another existing commercial stability analysis tool (STAN tool). In this report, the newly created tool is proved to be as rigorous as STAN for detecting instabilities. Additionally, it is determined that the MIMO analysis is a very profitable addition to stability analysis, since it helps to eliminate possible problems of loss of controllability, observability and overmodeling.
Resumo:
This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.
Resumo:
Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Resumo:
This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.
Resumo:
One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.
Resumo:
Fundacion Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
Computer vision algorithms that use color information require color constant images to operate correctly. Color constancy of the images is usually achieved in two steps: first the illuminant is detected and then image is transformed with the chromatic adaptation transform ( CAT). Existing CAT methods use a single transformation matrix for all the colors of the input image. The method proposed in this paper requires multiple corresponding color pairs between source and target illuminants given by patches of the Macbeth color checker. It uses Delaunay triangulation to divide the color gamut of the input image into small triangles. Each color of the input image is associated with the triangle containing the color point and transformed with a full linear model associated with the triangle. Full linear model is used because diagonal models are known to be inaccurate if channel color matching functions do not have narrow peaks. Objective evaluation showed that the proposed method outperforms existing CAT methods by more than 21%; that is, it performs statistically significantly better than other existing methods.
Resumo:
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.