7 resultados para Monte Carlo Simulation.

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the valuation of energy assets related to natural gas. In particular, we evaluate a baseload Natural Gas Combined Cycle (NGCC) power plant and an ancillary instalation, namely a Liquefied Natural Gas (LNG) facility, in a realistic setting; specifically, these investments enjoy a long useful life but require some non-negligible time to build. Then we focus on the valuation of several investment options again in a realistic setting. These include the option to invest in the power plant when there is uncertainty concerning the initial outlay, or the option's time to maturity, or the cost of CO2 emission permits, or when there is a chance to double the plant size in the future. Our model comprises three sources of risk. We consider uncertain gas prices with regard to both the current level and the long-run equilibrium level; the current electricity price is also uncertain. They all are assumed to show mean reversion. The two-factor model for natural gas price is calibrated using data from NYMEX NG futures contracts. Also, we calibrate the one-factor model for electricity price using data from the Spanish wholesale electricity market, respectively. Then we use the estimated parameter values alongside actual physical parameters from a case study to value natural gas plants. Finally, the calibrated parameters are also used in a Monte Carlo simulation framework to evaluate several American-type options to invest in these energy assets. We accomplish this by following the least squares MC approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] En este trabajo se expone una metodología para modelar un sistema Multi-Agente (SMA), para que sea equivalente a un sistema de Ecuaciones Diferenciales Ordinarias (EDO), mediante un esquema basado en el método de Monte Carlo. Se muestra que el SMA puede describir con mayor riqueza modelos de sistemas dinámicos con variables cuantificadas discretas. Estos sistemas son muy acordes con los sistemas biológicos y fisiológicos, como el modelado de poblaciones o el modelado de enfermedades epidemiológicas, que en su mayoría se modelan con ecuaciones diferenciales. Los autores piensan que las ecuaciones diferenciales no son lo suficientemente apropiadas para modelar este tipo de problemas y proponen que se modelen con una técnica basada en agentes. Se plantea un caso basado en un modelo matemático de Leucemia Mieloide Crónica (LMC) que se transforma en un SMA equivalente. Se realiza una simulación de los dos modelos (SMA y EDO) y se compara los resultados obtenidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4th International Workshop on Transverse Polisarization Phenomena in Hard Processes (TRANSVERSITY 2014)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal-fired power plants may enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. Still, this advantage may erode or even turn into disadvantage depending on CO2 emission allowance price. This price will presumably rise in both the Kyoto Protocol commitment period (2008-2012) and the first post-Kyoto years. Thus, in a carbon-constrained environment, coal plants face financial risks arising in their profit margins, which in turn hinge on their so-called "clean dark spread". These risks are further reinforced when the price of the output electricity is determined by natural gas-fired plants' marginal costs, which differ from coal plants' costs. We aim to assess the risks in coal plants' margins. We adopt parameter values estimated from empirical data. These in turn are derived from natural gas and electricity markets alongside the EU ETS market where emission allowances are traded. Monte Carlo simulation allows to compute the expected value and risk profile of coal-based electricity generation. We focus on the clean dark spread in both time periods under different future scenarios in the allowance market. Specifically, bottom 5% and 10% percentiles are derived. According to our results, certain future paths of the allowance price may impose significant risks on the clean dark spread obtained by coal plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmission investments are currently needed to meet an increasing electricity demand, to address security of supply concerns, and to reach carbon-emissions targets. A key issue when assessing the benefits from an expanded grid concerns the valuation of the uncertain cash flows that result from the expansion. We propose a valuation model that accommodates both physical and economic uncertainties following the Real Options approach. It combines optimization techniques with Monte Carlo simulation. We illustrate the use of our model in a simplified, two-node grid and assess the decision whether to invest or not in a particular upgrade. The generation mix includes coal-and natural gas-fired stations that operate under carbon constraints. The underlying parameters are estimated from observed market data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

27 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the valuation of an operating wind farm and the finite-lived option to invest in it under different reward/support schemes: a constant feed-in tariff, a premium on top of the electricity market price (either a fixed premium or a variable subsidy such as a renewable obligation certificate or ROC), and a transitory subsidy, among others. Futures contracts on electricity with ever longer maturities enable market-based valuations to be undertaken. The model considers up to three sources of uncertainty: the electricity price, the level of wind generation, and the certificate (ROC) price where appropriate. When analytical solutions are lacking, we resort to a trinomial lattice combined with Monte Carlo simulation; we also use a two-dimensional binomial lattice when uncertainty in the ROC price is considered. Our data set refers to the UK. The numerical results show the impact of several factors involved in the decision to invest: the subsidy per MWh generated, the initial lump-sum subsidy, the maturity of the investment option, and electricity price volatility. Different combinations of variables can help bring forward investments in wind generation. One-off policies, e.g., a transitory initial subsidy, seem to have a stronger effect than a fixed premium per MWh produced.