5 resultados para Molecular weight hyaluronan

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-viral gene delivery vectors are emerging as a safer alternative to viral vectors. Among natural polymers, chitosan (Ch) is the most studied one, and low molecular weight Ch, specifically, presents a wide range of advantages for non-viral pDNA delivery. It is crucial to determine the best process for the formation of Low Molecular Weight Chitosan (LMWC)-pDNA complexes and to characterize their physicochemical properties to better understand their behavior once the polyplexes are administered. The transfection efficiency of Ch based polyplexes is relatively low. Therefore, it is essential to understand all the transfection process, including the cellular uptake, endosomal escape and nuclear import, together with the parameters involved in the process to improve the design and development of the non-viral vectors. The aim of this review is to describe the formation and characterization of LMWC based polyplexes, the in vitro transfection process and finally, the in vivo applications of LMWC based polyplexes for gene therapy purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lignosulphonates (LS) and fermentable sugars are the main components of spent sulphite liquors (SSL) produced in acid sulphite pulping. In spite of different methods have been used for spent liquor fractionation such as precipitation or vaporization; membrane technology allows the separation of these components from the SSL due to their different size molecular weight, offering great advantages with regards to the traditionally methods (less energy consumption, high selective separation, and many others). In the present study, ceramic membranes with different cut-offs (15 kDa, 5 kDa and 1 kDa) were used to achieve the sugar purification and the LS concentration. The membranes were evaluated according to their efficacy and efficiency properties. Different series system were tested in order to improve the aptitudes of a singular membrane. The system with the three membranes in series (15, 5 and 1 kDa respectively) obtained the most purified permeate stream, referred to the sugar content. Also, a characterisation of the LS contained in the different streams produced in this system was carried out in order to know in a more precise manner the valorisation potential of these components by means of biorefinery processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degradation behavior and mechanical properties of polycaprolactone/nanohydroxyapatite composite scaffolds are studied in phosphate buffered solution (PBS), at 37 degrees C, over 16 weeks. Under scanning electron microscopy (SEM), it was observed that the longer the porous scaffolds remained in the PBS, the more significant the thickening of the pore walls of the scaffold morphology was. A decrease in the compressive properties, such as the modulus and the strength of the PCL/nHA composite scaffolds, was observed as the degradation experiment progressed. Samples with high nHA concentrations degraded more significantly in comparison to those with a lower content. Pure PCL retained its mechanical properties comparatively well in the study over the period of degradation. After the twelfth week, the results obtained by GPC analysis indicated a significant reduction in their molecular weight. The addition of nHA particles to the scaffolds accelerated the weight loss of the composites and increased their capacity to absorb water during the initial degradation process. The addition of these particles also affected the degradation behavior of the composite scaffolds, although they were not effective at compensating the decrease in pH prompted by the degradation products of the PCL.