2 resultados para Modes de phonation
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.
Resumo:
In this work a chain of 4000 silver nanoparticles embedded in a glass medium is considered, and its leftmost particle is excited by an electric field pulse of Gaussian shape. Considering Drude’s model, losses of the system are taken into account by γ factor, which stands for the Ohmic losses, and different quantities, such as frequencies of excited modes and group velocities are calculated. Besides, these results are compared to those obtained from the dispersion relation of an infinite chain. The increase of losses affects the lifetime and propagation length of the plasmon; besides, although the response dispersion relation for an infinite chain seems to remain invariable, this is not the case for a finite chain. The mismatches are bigger for higher losses. Furthermore, plasmon propagation velocities are analysed, and an explanation for the mismatch of longitudinal modes close to the intersection point with the dispersion of light is suggested. Finally, some concepts to treat this problem from the energy transport point of view are introduced.