3 resultados para Mechanical behavior

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In nickel-based superalloys, substitutional solute species have a strong impact on in service mechanical properties as well as on oxidation and corrosion resistances. In alloy 718, recent studies carried out by tensile tests highlighted the fact that refractory solute species are able to interact strongly with mobile dislocations during plastic deformation, generating dynamic strain ageing, and, in wide ranges of tests temperatures and strain rates, Portevin-Le Chatelier effect. The precise nature of the substitutional element responsible for such a dynamic interaction is still subject to debate. We addressed this question by means of mechanical spectroscopy studies of alloy 718 and various related alloys corresponding to monitored changes in the chemical composition. Only a single internal friction relaxation peak has been observed for all the studied alloys. By analyzing the damping behavior of these alloys at different imposed solicitation frequencies by sweeping a large temperatures range, the activation energies of the relaxation process and the type of mechanism involved have been determined. The process is a "Zener relaxation" in the alloys, i.e. a substitutional atoms dipole reorientation under applied stress. The results tend to prove that Niobium is not involved in the relaxation process whereas Molybdenum content seems to play an important role in the relaxation intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compatibilized blends of polypropylene (PP) and polyamide-12 (PA12) as a second component were obtained by direct injection molding having first added 20% maleic anhydride-modified copolymer (PP-g-MA) to the PP, which produced partially grafted PP (gPP). A nucleating effect of the PA12 took place on the cooling crystallization of the gPP, and a second crystallization peak of the gPP appeared in the PA12-rich blends, indicating changes in the crystalline morphology. There was a slight drop in the PA12 crystallinity of the compatible blends, whereas the crystallinity of the gPP increased significantly in the PA12-rich blends. The overall reduction in the dispersed phase particle size together with the clear increase in ductility when gPP was used instead of PP proved that compatibilization occurred. Young's modulus of the blends showed synergistic behavior. This is proposed to be both due to a change in the crystalline morphology of the blends on the one hand and, on the other, in the PA12-rich blends, to the clear increase in the crystallinity of the gPP phase, which may, in turn, have been responsible for the increase in its continuity and its contribution to the modulus.