3 resultados para Learning network franchising

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the findings of an experiment designed to study how people learn and make decisions in network games. Network games offer new opportunities to identify learning rules, since on networks (compared to e.g. random matching) more rules differ in terms of their information requirements. Our experimental design enables us to observe both which actions participants choose and which information they consult before making their choices. We use this information to estimate learning types using maximum likelihood methods. There is substantial heterogeneity in learning types. However, the vast majority of our participants' decisions are best characterized by reinforcement learning or (myopic) best-response learning. The distribution of learning types seems fairly stable across contexts. Neither network topology nor the position of a player in the network seem to substantially affect the estimated distribution of learning types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep neural networks have recently gained popularity for improv- ing state-of-the-art machine learning algorithms in diverse areas such as speech recognition, computer vision and bioinformatics. Convolutional networks especially have shown prowess in visual recognition tasks such as object recognition and detection in which this work is focused on. Mod- ern award-winning architectures have systematically surpassed previous attempts at tackling computer vision problems and keep winning most current competitions. After a brief study of deep learning architectures and readily available frameworks and libraries, the LeNet handwriting digit recognition network study case is developed, and lastly a deep learn- ing network for playing simple videogames is reviewed.