5 resultados para Large system
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.
Resumo:
179 p.
Resumo:
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.
Resumo:
The article analyses the construction process, the evolution and the disturbing future of the facade enclosure of the collective housing constructions built during the developmental period in the province of Gipuzkoa. 128 residential complexes were checked, and 17 people who directly took part in the construction of many of these buildings were interviewed. After examining the material and elements that make up the conventional facade solution used in Gipuzkoa and in much of Spain not only during those years but also up to the present time, the effects and causes of its main damages and flaws were studied. Its complex and costly adaptation to current demands is going to require a strong effort from society at large, and this raises the question of whether the life cycle of this construction system should be terminated once and for all.
Resumo:
The surge of the Internet traffic with exabytes of data flowing over operators mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cellsas- a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of nonx86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing. Topics: