10 resultados para Kings Point
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Contributed to: Virtual Retrospect 2007 (Pessac, France, Nov 14-16, 2007)
Resumo:
1 PDF document (8 pp., English).-- Contributed to: VSMM'08: 14th International Conference on Virtual Systems and Multimedia (Limassol, Cyprus, Oct 20-25, 2008)
Resumo:
This work shows the method developed to solve the wheel-rail contact problem via a look-up table with a three-dimensional elastic model. This method enables introduction of the two contact point effect on vehicle movement using three-dimensional analysis of surfaces including the influence of the angle of attack. This work presents several dynamic simulations and studies the impact that the introduction of the two contact points on three dimensions has on wear indexes and derailment risk against traditional bidimensional analysis. Furthermore, it studies advantages and disadvantages of using a look-up table against an on-line resolution of the problem.
Resumo:
Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)
Resumo:
This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (K-Lambda)hybrid p-cyclic self-mappings relative to a Bregman distance Df, associated with a Gâteaux differentiable proper strictly convex function f in a smooth Banach space, where the real functions Lambda and K quantify the point-to-point hybrid and nonexpansive (or contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic hybrid self-mappings.
Resumo:
In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.
Resumo:
Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.
Resumo:
This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.
Resumo:
Coincidence and common fixed point theorems for a class of 'Ciric-Suzuki hybrid contractions involving a multivalued and two single-valued maps in a metric space are obtained. Some applications including the existence of a common solution for certain class of functional equations arising in a dynamic programming are also discussed..
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.