5 resultados para Ionic Strength

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In the last decades, the topic of business ethics has attracted great interest at the academic and professional levels. Nowadays business ethics is being increasingly implemented as a necessary discipline in universities’ study plans on business management. Moreover, its importance is also evident according to the worldwide increase of organizations and/or institutions that have implemented ethics systems. However, some approaches thoroughly do not consider the importance and the need of an ethical behaviour and are still guiding the actions and the way of thinking of many academics and professionals led to consider that the only responsibility of business is limited just to profit maximization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Rumenic acid (cis9,trans11-18:2) is the main natural isomer of conjugated linoleic acid (CLA). Rumenic acid has many purported health benefits, but effects of most other CLA isomers are unknown. Typically trans7,cis9-18:2 is the second most abundant CLA isomer, but it co-elutes with rumenic acid on conventional polar gas chromatography (GC) columns, requiring complimentary analysis with silver-ion high performance liquid chromatography (Ag(+)-HPLC). Herein we report a rapid method for analyzing rumenic acid and trans7,cis9-18:2 using a 30 m ionic-liquid GC column. Optimal resolution of the two CLA isomers was at 145 degrees C and analysis of backfat from barley-fed cattle compared well with GC/Ag(+)-HPLC (y =0.978x - 0.031, r =0.985, P <0.001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.