3 resultados para Interpretive structural modelling (ISM)

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In today s economy, innovation is considered to be one of the main driving forces behind business competitiveness, if not the most relevant one. Traditionally, the study of innovation has been addressed from different perspectives. Recently, literature on knowledge management and intellectual capital has provided new insights. Considering this, the aim of this paper is to analyze the impact of different organizational conditions i.e. structural capital on innovation capability and innovation performance, from an intellectual capital (IC) perspective. As regards innovation capability, two dimensions are considered: new idea generation and innovation project management. The population subject to study is made up of technology-based Colombian firms. In order to gather information about the relevant variables involved in the research, a questionnaire was designed and addressed to the CEOs of the companies making up the target population. The sample analyzed is made up of 69 companies and is large enough to carry out a statistical study based on structural equation modelling (partial least squares approach) using PLS-Graph software (Chin and Frye, 2003). The results obtained show that structural capital explains to a great extent both the effectiveness of the new idea generation process and of innovation project management. However, the influence of each specific organizational component making up structural capital (organizational design, organizational culture, hiring and professional development policies, innovation strategy, technological capital, and external structure) varies. Moreover, successful innovation project management is the only innovation capability dimension that exerts a significant impact on company performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).