3 resultados para I Mass Function
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Background: Screen-viewing has been associated with increased body mass, increased risk of metabolic syndrome and lower psychological well-being among children and adolescents. There is a shortage of information about the nature of contemporary screen-viewing amongst children especially given the rapid advances in screen-viewing equipment technology and their widespread availability. Anecdotal evidence suggests that large numbers of children embrace the multi-functionality of current devices to engage in multiple forms of screen-viewing at the same time. In this paper we used qualitative methods to assess the nature and extent of multiple forms of screen-viewing in UK children. Methods: Focus groups were conducted with 10-11 year old children (n = 63) who were recruited from five primary schools in Bristol, UK. Topics included the types of screen-viewing in which the participants engaged; whether the participants ever engaged in more than one form of screen-viewing at any time and if so the nature of this multiple viewing; reasons for engaging in multi-screen-viewing; the room within the house where multi-screen-viewing took place and the reasons for selecting that room. All focus groups were transcribed verbatim, anonymised and thematically analysed. Results: Multi-screen viewing was a common behaviour. Although multi-screen viewing often involved watching TV, TV viewing was often the background behaviour with attention focussed towards a laptop, handheld device or smart-phone. There were three main reasons for engaging in multi-screen viewing: 1) tempering impatience that was associated with a programme loading; 2) multi-screen facilitated filtering out unwanted content such as advertisements; and 3) multi-screen viewing was perceived to be enjoyable. Multi-screen viewing occurred either in the child's bedroom or in the main living area of the home. There was considerable variability in the level and timing of viewing and this appeared to be a function of whether the participants attended after-school clubs. Conclusions: UK children regularly engage in two or more forms of screen-viewing at the same time. There are currently no means of assessing multi-screen viewing nor any interventions that specifically focus on reducing multi-screen viewing. To reduce children's overall screen-viewing we need to understand and then develop approaches to reduce multi-screen viewing among children.
Resumo:
Using US data for the period 1967:5-2002:4, this paper empirically investigates the performance of a Fed’s reaction function (FRF) that (i) allows for the presence of switching regimes, (ii) considers the long-short term spread in addition to the typical variables, (iii) uses an alternative monthly indicator of general economic activity suggested by Stock and Watson (1999), and (iv) considers interest rate smoothing. The estimation results show the existence of three switching regimes, two characterized by low volatility and the remaining regime by high volatility. Moreover, the scale of the responses of the Federal funds rate to movements in the rate of inflation and the economic activity index depends on the regime. The estimation results also show robust empirical evidence that the importance of the term spread in the FRF has increased over the sample period and the FRF has been more stable during the term of office of Chairman Greenspan than in the pre-Greenspan period.
Resumo:
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.