9 resultados para Helical Antennas
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
9 p.
Resumo:
110 p.
Resumo:
Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.
Resumo:
According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (u(z)) and azimuthal (u(circle minus)) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry. This is a powerful result, since it reduces the highly complex flow to merely four parameters. In the present work, corresponding computer simulations using Reynolds-Averaged Navier-Stokes equations have been carried out and compared to the experimental observations. The main objective of this study is to investigate how well the simulations can reproduce the physics of the flow and if the same analytical model can be applied. Using this model, parametric studies can be significantly reduced and, further, reliable simulations can substantially reduce the costs of the parametric studies themselves.
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
Time variability of the scattering signals from wind turbines may lead to degradation problems on the communication systems provided in the UHF band, especially under near field condition. In order to analyze the variability due to the rotation of the blades, this paper characterizes empirical Doppler spectra obtained from real samples of signals scattered by wind turbines with rotating blades under near field condition. A new Doppler spectrum model is proposed to fit the spectral characteristics of these signals, providing notable goodness of fit. Finally, the effect of this kind of time variability on the degradation of OFDM signals is studied.
Resumo:
[ES]Hoy en día, los sistemas de comunicación inalámbricos soportan un amplio número de servicios como la voz, datos y vídeos que requieren unas grandes tasas de transmisión. Por ello la mejora de la calidad del enlace que ofrecen los sistemas MIMO es clave. El problema surge al colocar varias antenas en un terminal móvil sin que aparezca un acoplamiento entre las distintas antenas que evite el correcto funcionamiento de estas. En este documento se realizará un estudio de los diferentes métodos de desacoplo entre antenas PIFA (Planar Inverted-F antenna) en un terminal móvil.
Resumo:
[EU]Lan honetan, lehenik eta behin, SIW teknologiaren funtzionamendua ikasi dugu. Ondoren, eta gaur egun ezagunagoak diren antzeko mikrouhinetako teknologiei (microstrip, uhin gida edo antzerako transmisio lerroak) buruzko jakintza handitu ostean, hauen eta SIW teknologiaren arteko baliokidetasuna nola lortu ikasi dugu. HFSS simulazio-tresnarekin SIW teknologiadun antena ezberdinak diseinatu eta simulatu ditugu (propietate nahiz tamaina ezberdinekoak) eta hauen emaitzak aztertu, besteak beste bere erradiazio diagrama eta S parametroak. Azkenik emaitza hauek interpretatu, eta ondorio bat lortu dugu. SIW teknologiak besteekiko dituen abantailaz gain, diseinu hauek aurrera eramateko bete ditugun pausuak eta simulazio emaitzetatik lortutako interpretazioak ondorengo memoria honetan azalduko ditugu, baita lan honek izan dituen fase ezberdinak eta lan hau aurrera ateratzearen aurrekontua ere.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.