8 resultados para HSJ CPR
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[ES]La fibrilación ventricular (VF) es el primer ritmo registrado en el 40\,\% de las muertes súbitas por paro cardiorrespiratorio extrahospitalario (PCRE). El único tratamiento eficaz para la FV es la desfibrilación mediante una descarga eléctrica. Fuera del hospital, la descarga se administra mediante un desfibrilador externo automático (DEA), que previamente analiza el electrocardiograma (ECG) del paciente y comprueba si presenta un ritmo desfibrilable. La supervivencia en un caso de PCRE depende fundamentalmente de dos factores: la desfibrilación temprana y la resucitación cardiopulmonar (RCP) temprana, que prolonga la FV y por lo tanto la oportunidad de desfibrilación. Para un correcto análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que, debido a las compresiones torácicas, la RCP introduce artefactos en el ECG. Desafortunadamente, la interrupción de la RCP afecta negativamente al éxito en la desfibrilación. En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años. Los DEA, que originalmente se diseñaron para pacientes adultos, deben discriminar de forma precisa las arritmias pediátricas para que su uso en niños sea seguro. Varios DEAs se han adaptado para uso pediátrico, bien demostrando la precisión de los algoritmos para adultos con arritmias pediátricas, o bien mediante algoritmos específicos para arritmias pediátricas. Esta tesis presenta un nuevo algoritmo DEA diseñado conjuntamente para pacientes adultos y pediátricos. El algoritmo se ha probado exhaustivamente en bases de datos acordes a los requisitos de la American Heart Association (AHA), y en registros de resucitación con y sin artefacto RCP. El trabajo comenzó con una larga fase experimental en la que se recopilaron y clasificaron retrospectivamente un total de 1090 ritmos pediátricos. Además, se revisó una base de arritmias de adultos y se añadieron 928 nuevos ritmos de adultos. La base de datos final contiene 2782 registros, 1270 se usaron para diseñar el algoritmo y 1512 para validarlo. A continuación, se diseñó un nuevo algoritmo DEA compuesto de cuatro subalgoritmos. Estos subalgoritmos están basados en un conjunto de nuevos parámetros para la detección de arritmias, calculados en diversos dominios de la señal, como el tiempo, la frecuencia, la pendiente o la función de autocorrelación. El algoritmo cumple las exigencias de la AHA para la detección de ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos como en pediátricos. El trabajo concluyó con el análisis del comportamiento del algoritmo con episodios reales de resucitación. En los ritmos que no contenían artefacto RCP se cumplieron las exigencias de la AHA. Posteriormente, se estudió la precisión del algoritmo durante las compresiones torácicas, antes y después de filtrar el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo método desarrollado a lo largo de la tesis. Los ritmos desfibrilables se detectaron de forma precisa tras el filtrado, los no-desfibrilables sin embargo no.
Resumo:
Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years, research has been focused on designing methods for analysis of ECG during chest compressions. Most approaches are based either on adaptive filters to remove the CPR artifact or on robust algorithms which directly diagnose the corrupted ECG. In general, all the methods report low specificity values when tested on short ECG segments, but how to evaluate the real impact on CPR delivery of continuous rhythm analysis during CPR is still unknown. Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a thorough review of the field as the starting point for these late developments and to underline the open questions and future lines of research to be explored in the following years.
Resumo:
[EU]Lan honen helburua, sentsorizatutako panpina kontrolatzeko software bat garatzea da, bihotz biriketako berpiztearen inguruko ikerkuntza sustatzeko helburuarekin. Kontrol hau aurrera eramateko bihotz biriketako berpiztearen inguruko kalitate parametro garrantzitsuenak jasotzen dituzten sentsoreekin hornitutako panpina bat erabili da, softwarearen eta panpinaren sentsoreen arteko interfaze gisa NI-DAQ National Instruments-eko txartela erabili delarik. Eskema honi jarraituz, software honek eskaintzen dituen funtzionalitate garrantzitsuenak hurrengoak dira: panpinaren bihotza simulatuko duen elektrokardiograma seinale bat panpinara transferitzea, sentsoreetatik lortutako informazioa biltegiratzea eta denbora errealean bistaratzea eta aurretiaz grabatutako erregistroen erreprodukzioa. Software hau garatzearen arrazoi nagusiak, bihotz biriketako berpiztearen kalitatea hobetzea eta elektrodoen eta pazientearen azalaren arteko kontaktuak elektrokardiograman sortzen duen interferentzia ezaugarritzea dira, bihotz-geldiunea pairatzen duen pazientearen bizi-iraupena handituko duten tresnen garapena sustatuz. Izan ere, bihotz-heriotza da herrialde garatuenen lehen heriotza-arrazoia.
Resumo:
[EN]Hyperventilation, which is common both in-hospital and out-of-hospital cardiac arrest, decreases coronary and cerebral perfusion contributing to poorer survival rates in both animals and humans. Current resucitation guidelines recommend continuous monitoring of exhaled carbon dioxide (CO2) during cardiopulmonary resucitation (CPR) and emphasize good quality of CPR, including ventilations at 8-10 min1. Most of commercial monitors/de- brilators incorporate methods to compute the respiratory rate based on capnography since it shows uctuations caused by ventilations. Chest compressions may induce artifacts in this signal making the calculation of the respiratory rate di cult. Nevertheless, the accuracy of these methods during CPR has not been documented yet. The aim of this project is to analyze whether the capnogram is reliable to compute ventilation rate during CPR. A total of 91 episodes, 63 out-of-hospital cardiac arrest episodes ( rst database) and 28 in-hospital cardiac arrest episodes (second database) were used to develop an algorithm to detect ventilations in the capnogram, and the nal aim is to provide an accurate ventilation rate for feedback purposes during CPR. Two graphic user interfaces were developed to make the analysis easier and another two were adapted to carry out this project. The use of this interfaces facilitates the managment of the databases and the calculation of the algorithm accuracy. In the rst database, as gold standard every ventilation was marked by visual inspection of both the impedance, which shows uctuations with every ventilation, and the capnography signal. In the second database, volume of the respiratory ow signal was used as gold standard to mark ventilation instants since it is not a ected by chest compressions. The capnogram was preprocessed to remove high frequency noise, and the rst di erence was computed to de ne the onset of inspiration and expiration. Then, morphological features were extracted and a decission algorithm built based on the extracted features to detect ventilation instants. Finally, ventilation rate was calculated using the detected instants of ventilation. According to the results obtained in this project, the capnogram can be reliably used to give feedback ventilation rate, and therefore, on hyperventilation in a resucitation scenario.
Resumo:
[EN]These feedback devices are used to improve the quality of chest compressions while performing CPR technique, as they provide real time information to guide the rescuer during resuscitation attempts. Most feedback systems on the market are based on accelerometers and additional sensors or reference signals, used for calculating the displacement of the chest from the acceleration signal. This makes them expensive and complex devices. With the aim of optimizing these feedback systems and overcoming their limitations, in this document we propose three alternative methods for calculating the depth of chest compressions. These methods differ from the ones existing so far in that they use exclusively the chest acceleration signal to compute the displacement. With their implementation, it would be possible to develop systems to provide accurate feedback more easily and economically. In this context, this document details the design and implementation of the three methods and the development of a software environment to analyze the accuracy of each of them and compare the results by means of a detailed calculation of errors. Furthermore, in order to evaluate the methods a database is required, and it can be compiled using a sensorized manikin to record the acceleration signal and the gold standard chest compression depth. The database generated will be used for other studies related to the estimation of the compression depth, because the signals obtained in the manikin platform are very similar to those recorded during a real resuscitation episode.
Resumo:
Quality of cardiopulmonary resuscitation (CPR) improves through the use of CPR feedback devices. Most feedback devices integrate the acceleration twice to estimate compression depth. However, they use additional sensors or processing techniques to compensate for large displacement drifts caused by integration. This study introduces an accelerometer-based method that avoids integration by using spectral techniques on short duration acceleration intervals. We used a manikin placed on a hard surface, a sternal triaxial accelerometer, and a photoelectric distance sensor (gold standard). Twenty volunteers provided 60 s of continuous compressions to test various rates (80-140 min(-1)), depths (3-5 cm), and accelerometer misalignment conditions. A total of 320 records with 35312 compressions were analysed. The global root-mean-square errors in rate and depth were below 1.5 min(-1) and 2 mm for analysis intervals between 2 and 5 s. For 3 s analysis intervals the 95% levels of agreement between the method and the gold standard were within -1.64-1.67 min(-1) and -1.69-1.72 mm, respectively. Accurate feedback on chest compression rate and depth is feasible applying spectral techniques to the acceleration. The method avoids additional techniques to compensate for the integration displacement drift, improving accuracy, and simplifying current accelerometer-based devices.
Resumo:
nterruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.
Resumo:
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.