20 resultados para Functional equations

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coincidence and common fixed point theorems for a class of 'Ciric-Suzuki hybrid contractions involving a multivalued and two single-valued maps in a metric space are obtained. Some applications including the existence of a common solution for certain class of functional equations arising in a dynamic programming are also discussed..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (Pmax(T) permutation=161024). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naı¨ve cells, P = 0.0001; CD8+ naı¨ve cells, P,0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 p. -- [Editorial Material]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The presence of EGFR kinase domain mutations in a subset of NSCLC patients correlates with the response to treatment with the EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Although most EGFR mutations detected are short deletions in exon 19 or the L858R point mutation in exon 21, more than 75 different EGFR kinase domain residues have been reported to be altered in NSCLC patients. The phenotypical consequences of different EGFR mutations may vary dramatically, but the majority of uncommon EGFR mutations have never been functionally evaluated. Results: We demonstrate that the relative kinase activity and erlotinib sensitivity of different EGFR mutants can be readily evaluated using transfection of an YFP-tagged fragment of the EGFR intracellular domain (YFP-EGFR-ICD), followed by immunofluorescence microscopy analysis. Using this assay, we show that the exon 20 insertions Ins770SVD and Ins774HV confer increased kinase activity, but no erlotinib sensitivity. We also show that, in contrast to the common L858R mutation, the uncommon exon 21 point mutations P848L and A859T appear to behave like functionally silent polymorphisms. Conclusion: The ability to rapidly obtain functional information on EGFR variants of unknown relevance using the YFP-EGFR-ICD assay might prove important in the future for the management of NSCLC patients bearing uncommon EGFR mutations. In addition, our assay may be used to determine the response of resistant EGFR mutants to novel second-generation TKIs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.