4 resultados para Fourier transform infra reds
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Time variability of the scattering signals from wind turbines may lead to degradation problems on the communication systems provided in the UHF band, especially under near field condition. In order to analyze the variability due to the rotation of the blades, this paper characterizes empirical Doppler spectra obtained from real samples of signals scattered by wind turbines with rotating blades under near field condition. A new Doppler spectrum model is proposed to fit the spectral characteristics of these signals, providing notable goodness of fit. Finally, the effect of this kind of time variability on the degradation of OFDM signals is studied.
Resumo:
The miscibility and phase behavior of poly(4-vinylphenol) (PVPh) with poly(vinyl methyl ketone) (PVMK) was investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (T-g) over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained T(g)s are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh) and vinyl methyl ketone (VMK) functional groups. These results were also established by scanning electron microscopy study (SEM).
Resumo:
ES]El proyecto descrito en este documento consiste en la investigación sobre la viabilidad de detección automática de pulso y respiración a partir de la señal de aceleración, medida mediante un acelerómetro posicionado bien en la carótida o en el pecho del paciente. El motivo de la utilización de la aceleración está principalmente en el bajo costo y por la tecnología sencilla de los acelerómetros. En este documento se explica cómo se ha montado una plataforma para la adquisición de las señales de aceleración y el electrocardiograma emitido por el corazón, en sujetos sanos. Con la base de señales adquirida se ha diseñado un método basado en el dominio de la frecuencia para detectar la presencia de pulso y respiración. Los resultados son prometedores y confirman la posibilidad de desarrollar estos detectores. Las herramientas desarrolladas podrán ser utilizadas para análisis futuros y para seguir avanzando en este estudio.
Resumo:
In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.