3 resultados para Fire regime

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Las Herrerias volcano (Bolanos de Calatrava, Campo de Calatrava Volcanic Field) is characterized by the great amount and variety of fire-fountain fed deposits. All these deposits are compositionally similar, being constituted by magnesium-rich (MgO = 11.58-4.19%), aluminium-poor (Al2O3 = 9.64-10.99%) highly sodic (Na2O = 2.24-3.81%) melanephelinites, with high contents in rare earth-elements (10x-200x chondrite), particularly in light-rare earth elements with respect to the heavy ones [(La/Lu)(N) = 32-35]. Contrary to the equivalent melanephelinites of this volcanic field, the relatively low contents in Ni (233-286 ppm), Cr (393-520 ppm) and magnesium number (Mg* = 45-54) indicate that these rocks do not correspond with primary melts. On the other hand, the variable distribution of clinopyroxene in the magma during eruption would be responsible for the slight compositional differences observed in the studied samples. Finally, we argue that these fire fountains were developed in a continental intraplate setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.