4 resultados para Electron spin resonance measurements

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

32 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract de congreso: Póster presentado en 12th International Conference on Materials Chemistry (MC12), 20 - 23 July 2015, York, United Kingdom

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We show that dynamics in the spin-orbit coupling field simulate the von Neumann measurement of a particle spin. We demonstrate how the measurement influences the spin and coordinate evolution of a particle by comparing two examples of such a procedure. The first example is a simultaneous measurement of spin components, sigma(x) and sigma(y), corresponding to non-commuting operators, which cannot be accurately obtained together at a given time instant due to the Heisenberg uncertainty ratio. By mapping spin dynamics onto a spatial walk, such a procedure determines measurement-time averages of sigma(x) and sigma(y), which can already be precisely evaluated in a single short-time measurement. The other, qualitatively different, example is the spin of a one-dimensional particle in a magnetic field. Here, the measurement outcome depends on the angle between the spin-orbit coupling and magnetic fields. These results can be applied to studies of spin-orbit coupled cold atoms and electrons in solids.