31 resultados para Ehrenfest classical quantum theorem

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spanish Relativity Meeting (ERE 2014) Valencia, SPAIN, SEP 01-05, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

79 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a bio-inspired sequential quantum protocol for the cloning and preservation of the statistics associated to quantum observables of a given system. It combines the cloning of a set of commuting observables, permitted by the no-cloning and no-broadcasting theorems, with a controllable propagation of the initial state coherences to the subsequent generations. The protocol mimics the scenario in which an individual in an unknown quantum state copies and propagates its quantum information into an environment of blank qubits Finally, we propose a realistic experimental implementation of this protocol in trapped ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identify an intriguing feature of the electron-vibrational dynamics of molecular systems via a computational examination of trans-polyacetylene oligomers. Here, via the vibronic interactions, the decay of an electron in the conduction band resonantly excites an electron in the valence band, and vice versa, leading to oscillatory exchange of electronic population between two distinct electronic states that lives for up to tens of picoseconds. The oscillatory structure is reminiscent of beating patterns between quantum states and is strongly suggestive of the presence of long-lived molecular electronic coherence. Significantly, however, a detailed analysis of the electronic coherence properties shows that the oscillatory structure arises from a purely incoherent process. These results were obtained by propagating the coupled dynamics of electronic and vibrational degrees of freedom in a mixed quantum-classical study of the Su-Schrieffer-Heeger Hamiltonian for polyacetylene. The incoherent process is shown to occur between degenerate electronic states with distinct electronic configurations that are indirectly coupled via a third auxiliary state by vibronic interactions. A discussion of how to construct electronic superposition states in molecules that are truly robust to decoherence is also presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IARD 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields - Galileo Galilei Inst Theoret Phys (GGI), Florence, ITALY - MAY 29-JUN 01, 2012. Edited by:Horowitz, LP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

23 p. -- An extended abstract of this work appears in the proceedings of the 2012 ACM/IEEE Symposium on Logic in Computer Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quantum state tomography, entanglement detection and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of the following key elements: propagation channels, beam splitters, linear amplifiers and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyse our techniques with numerical examples and experimental data, and compare them with the scheme developed in Eichler et al (2011 Phys. Rev. Lett. 106 220503; 2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.