18 resultados para ENERGY ANALYSIS
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
24 p.
Resumo:
468 p.
Resumo:
In this thesis project, a building in Vegagatan 12, Gävle has been analysed in order to see why it does consume more energy than it was expected. This building is a low energy building certified by Miljöbyggnad and it should use less than 55kWh/m2 year and nowadays it is using 62.23 kWh/m2. To get the needed data, some information about the building has been gathered, some measurements have been done in the building and some calculations have been done with those measurements. Finally, some possible solutions have been offered to reduce the energy use of the building. Insulating the floor, the pipes and the walls, reducing the indoor temperature in winter... All of these changes need the help of environmentally friendly attitudes, which is a very important fact in low energy buildings.
Resumo:
116 p.
Resumo:
In July 2013, the government approved a major overhaul of the Spanish electricity sector to correct existing imbalances that have led to an exponential increase of regulated electricity costs and a huge tariff deficit. The reform addresses the problem of financial sustainability of the sector, severely affected by weak demand and overcapacity. Previous regulation introduced in 2012 and early 2013, also aimed at restoring financial stability of the sector, failed to correct the tariff shortfall and new regulatory measures were needed to reduce the 4.5 billion euros forecasted deficit for 2013. The frequent change of the rules of the game in the sector has created regulatory uncertainty, more so as it is not clear that the present reform will be sufficient to eliminate the deficit. Moreover, the government has left the door open to new regulation that would deal with the price formation system. In general, short run financial criteria have prevailed, while efficiency principles and a long run perspective have little weight in the reform.
Resumo:
Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.
Resumo:
4 p.
Resumo:
4 p.
Resumo:
41 p.
Resumo:
27 p.
Resumo:
30 p.
Resumo:
38 p.
Resumo:
29 p.
Resumo:
33 p.
Resumo:
25 p.