2 resultados para Drag
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
An extensive range of conventional, vane-type, passive vortex generators (VGs) are in use for successful applications of flow separation control. In most cases, the VG height is designed with the same thickness as the local boundary layer at the VG position. However, in some applications, these conventional VGs may produce excess residual drag. The so-called low-profile VGs can reduce the parasitic drag associated to this kind of passive control devices. As suggested by many authors, low-profile VGs can provide enough momentum transfer over a region several times their own height for effective flow-separation control with much lower drag. The main objective of this work is to study the variation of the path and the development of the primary vortex generated by a rectangular VG mounted on a flat plate with five different device heights h = delta, h(1) = 0.8 delta, h(2) = 0.6 delta, h(3) = 0.4 delta and h(4) = 0.2 delta, where delta is the local boundary layer thickness. For this purpose, computational simulations have been carried out at Reynolds number Re = 1350 based on the height of the conventional VG h = 0.25m with the angle of attack of the vane to the oncoming flow beta = 18.5 degrees. The results show that the VG scaling significantly affects the vortex trajectory and the peak vorticity generated by the primary vortex.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.