17 resultados para Discrete time control systems

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of cooperation is analyzed in heterogeneous populations where individuals can be classified in two groups according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type, and thus behave under partial information conditions. The interactions between individuals are described by 2 × 2 symmetric games where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The well-posedness conditions of the system are derived. Depending on the parameters of the game, a restriction may exist for the generation length. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that, provided the conditions of well-posedness are verified, the linear stability of monomorphic states in the discrete-time replicator coincides with the one of the continuous case. Specific from the discrete-time case, a relaxed restriction for the generation length is derived, for which larger time-steps can be used without compromising the well-posedness of the replicator system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies Micken's discretization method to obtain a discrete-time SEIR epidemic model. The positivity of the model along with the existence and stability of equilibrium points is discussed for the discrete-time case. Afterwards, the design of a state observer for this discrete-time SEIR epidemic model is tackled. The analysis of the model along with the observer design is faced in an implicit way instead of obtaining first an explicit formulation of the system which is the novelty of the presented approach. Moreover, some sufficient conditions to ensure the asymptotic stability of the observer are provided in terms of a matrix inequality that can be cast in the form of a LMI. The feasibility of the matrix inequality is proved, while some simulation examples show the operation and usefulness of the observer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article investigates the convergence properties of iterative processes involving sequences of self-mappings of metric or Banach spaces. Such sequences are built from a set of primary self-mappings which are either expansive or non-expansive self-mappings and some of the non-expansive ones can be contractive including the case of strict contractions. The sequences are built subject to switching laws which select each active self-mapping on a certain activation interval in such a way that essential properties of boundedness and convergence of distances and iterated sequences are guaranteed. Applications to the important problem of stability of dynamic switched systems are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the presence of limit oscillations in an adaptive sampling system. The basic sampling criterion operates in the sense that each next sampling occurs when the absolute difference of the signal amplitude with respect to its currently sampled signal equalizes a prescribed threshold amplitude. The sampling criterion is extended involving a prescribed set of amplitudes. The limit oscillations might be interpreted through the equivalence of the adaptive sampling and hold device with a nonlinear one consisting of a relay with multiple hysteresis whose parameterization is, in general, dependent on the initial conditions of the dynamic system. The performed study is performed on the time domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is aimed at designing a robust vaccination strategy capable of eradicating an infectious disease from a population regardless of the potential uncertainty in the parameters defining the disease. For this purpose, a control theoretic approach based on a sliding-mode control law is used. Initially, the controller is designed assuming certain knowledge of an upper-bound of the uncertainty signal. Afterwards, this condition is removed while an adaptive sliding control system is designed. The closed-loop properties are proved mathematically in the nonadaptive and adaptive cases. Furthermore, the usual sign function appearing in the sliding-mode control is substituted by the saturation function in order to prevent chattering. In addition, the properties achieved by the closed-loop system under this variation are also stated and proved analytically. The closed-loop system is able to attain the control objective regardless of the parametric uncertainties of the model and the lack of a priori knowledge on the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are described based on q-calculus and Caputo fractional derivatives on any order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MELECON 2012 - 2012 16th IEEE Mediterranean Electrotechnical Conference, 25 Mar - 28 Mar 2012, Túnez

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real time monitoring allows the determination of the line state and the calculation of the actual rating value. The real time monitoring systems measure sag, conductor tension, conductor temperature or weather related magnitudes. In this paper, a new ampacity monitoring system for overhead lines, based on the conductor tension, the ambient temperature, the solar radiation and the current intensity, is presented. The measurements are transmitted via GPRS to a control center where a software program calculates the ampacity value. The system takes into account the creep deformation experienced by the conductors during their lifetime and calibrates the tension-temperature reference and the maximum allowable temperature in order to obtain the ampacity. The system includes both hardware implementation and remote control software.