7 resultados para DOMAIN OF ATTRACTION

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of -structure and decreased that of -helix. Partial phosphorylation increased the amount of undefined structure and decreased that of -helix without a significant increase in -structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is not hard to see how two visions of nature are intertwined in Darwin’s Journal of Researches: one vision, the province of romantic authors depicting the sentiments awakened by certain landscapes, the other, the domain of natural scientists describing the world without reference to the aesthetic qualities of the scenery. Nevertheless, analyses of this double perspective in Darwin’s work are relatively rare. Most scholars focus on Darwin, the scientist, and more or less ignore the aesthetic aspects of his work. Perceiving the gradual transformation of Darwin’s world view, however, depends on analyzing the two different modes in which Darwin approached and perceived the world. While one can, on occasion, find commentaries on the beauty of the natural world in Darwin’s early work, the passage of time produces a modification in the naturalist’s manner of perceiving nature. This does not, however, mean that Darwin ceases to find beauty in nature; on the contrary, the disenchantment, in Max Weber’s words, that Darwin’s theory produces should not be understood in a pejorative, but rather in a literal sense. The theory of evolution, in effect, divests nature of its magical character and begins to explain it in terms of natural selection, according it, in the process a new and more intense attraction. In the present work, the metaphysical implications of this new vision of the world are analyzed through the eyes of its discoverer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated the generation of dissolved free amino acids (DFAA) by the bacterivorous flagellate Rhynchomonas nasuta when feeding on abundant prey. Specifically, it examined whether this flagellate protist exhibits a chemosensory response towards those amino acids. The concentrations of glycine and the and D-enantiomers of glutamate, serine, threonine, alanine, and leucine were determined in co-cultures of the flagellate and bacteria. Glycine, L- and D-alanine, and L-serine were found to accumulate under these conditions in amounts that correlated positively with flagellate abundance, suggesting that protists are involved in their generation. Investigations of the chemotactic response of young and old foraging protists to the same amino acids, offered in concentrations similar to those previously generated, showed that glycine elicited the strongest attraction in both age groups. Young protists were strongly attracted to all the assayed amino acids, whereas older protists maintained a high level of attraction only for glycine. These results suggest that glycine generated by protists actively grazing in bacterially enriched patches functions as an infochemical, signaling to foraging protists the presence of available prey in the aquatic environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Targeting epidermal growth factor receptor (EGFR) has been one of the most effective colorectal cancer strategies. Anti-EGFR antibodies function by binding to the extracellular domain of EGFR, preventing its activation, and ultimately providing clinical benefit. KRAS mutations in codons 12 and 13 are recognized prognostic and predictive biomarkers that should be analyzed at the clinic prior to the administration of anti-EGFR therapy. However, still an important fraction of KRAS wild-type patients do not respond to the treatment. The identification of additional genetic determinants of primary or secondary resistance to EGFR targeted therapy for further improving the selection of patients is urgent. Herein, we review the latest published literature highlighting the most important genes that may predict resistance to anti-EGFR monoclonal antibodies in colorectal cancer patients. According to the available findings, the evaluation of BRAF, NRAS, PIK3CA, and PTEN status could be the right strategy to select patients who are likely to respond to anti-EGFR therapies. In the future, the combination of those biomarkers will help establish consensus that can be introduced into clinical practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: In complex with its cofactor UAF1, the USP1 deubiquitinase plays an important role in cellular processes related to cancer, including the response to DNA damage. The USP1/UAF1 complex is emerging as a novel target in cancer therapy, but several aspects of its function and regulation remain to be further clarified. These include the role of the serine 313 phosphorylation site, the relative contribution of different USP1 sequence motifs to UAF1 binding, and the potential effect of cancer-associated mutations on USP1 regulation by autocleavage. Methods: We have generated a large set of USP1 structural variants, including a catalytically inactive form (C90S), non-phosphorylatable (S313A) and phosphomimetic (S313D) mutants, deletion mutants lacking potential UAF1 binding sites, a mutant (GG/AA) unable to undergo autocleavage at the well-characterized G670/G671 diglycine motif, and four USP1 mutants identified in tumor samples that cluster around this cleavage site (G667A, L669P, K673T and A676T). Using cell-based assays, we have determined the ability of these mutants to bind UAF1, to reverse DNA damage-induced monoubiquitination of PCNA, and to undergo autocleavage. Results: A non-phosphorylatable S313A mutant of USP1 retained the ability to bind UAF1 and to reverse PCNA ubiquitination in cell-based assays. Regardless of the presence of a phosphomimetic S313D mutation, deletion of USP1 fragment 420-520 disrupted UAF1 binding, as determined using a nuclear relocation assay. The UAF1 binding site in a second UAF1-interacting DUB, USP46, was mapped to a region homologous to USP1(420-520). Regarding USP1 autocleavage, co-expression of the C90S and GG/AA mutants did not result in cleavage, while the cancer-associated mutation L669P was found to reduce cleavage efficiency. Conclusions: USP1 phosphorylation at S313 is not critical for PCNA deubiquitination, neither for binding to UAF1 in a cellular environment. In this context, USP1 amino acid motif 420-520 is necessary and sufficient for UAF1 binding. This motif, and a homologous amino acid segment that mediates USP46 binding to UAF1, map to the Fingers sub-domain of these DUBs. On the other hand, our results support the view that USP1 autocleavage may occur in cis, and can be altered by a cancer-associated mutation.