8 resultados para Controlled Signals.
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
9 p. : il.
Resumo:
Time variability of the scattering signals from wind turbines may lead to degradation problems on the communication systems provided in the UHF band, especially under near field condition. In order to analyze the variability due to the rotation of the blades, this paper characterizes empirical Doppler spectra obtained from real samples of signals scattered by wind turbines with rotating blades under near field condition. A new Doppler spectrum model is proposed to fit the spectral characteristics of these signals, providing notable goodness of fit. Finally, the effect of this kind of time variability on the degradation of OFDM signals is studied.
Resumo:
Numerous transcription factors self-assemble into different order oligomeric species in a way that is actively regulated by the cell. Until now, no general functional role has been identified for this widespread process. Here, we capture the effects of modulated self-assembly in gene expression with a novel quantitative framework. We show that this mechanism provides precision and flexibility, two seemingly antagonistic properties, to the sensing of diverse cellular signals by systems that share common elements present in transcription factors like p53, NF-kappa B, STATs, Oct and RXR. Applied to the nuclear hormone receptor RXR, this framework accurately reproduces a broad range of classical, previously unexplained, sets of gene expression data and corroborates the existence of a precise functional regime with flexible properties that can be controlled both at a genome-wide scale and at the individual promoter level.
Resumo:
Background: A new intervention aimed at managing patients with medically unexplained symptoms (MUS) based on a specific set of communication techniques was developed, and tested in a cluster randomised clinical trial. Due to the modest results obtained and in order to improve our intervention we need to know the GPs' attitudes towards patients with MUS, their experience, expectations and the utility of the communication techniques we proposed and the feasibility of implementing them. Physicians who took part in 2 different training programs and in a randomised controlled trial (RCT) for patients with MUS were questioned to ascertain the reasons for the doctors' participation in the trial and the attitudes, experiences and expectations of GPs about the intervention. Methods: A qualitative study based on four focus groups with GPs who took part in a RCT. A content analysis was carried out. Results: Following the RCT patients are perceived as true suffering persons, and the relationship with them has improved in GPs of both groups. GPs mostly valued the fact that it is highly structured, that it made possible a more comfortable relationship and that it could be applied to a broad spectrum of patients with psychosocial problems. Nevertheless, all participants consider that change in patients is necessary; GPs in the intervention group remarked that that is extremely difficult to achieve. Conclusion: GPs positively evaluate the communication techniques and the interventions that help in understanding patient suffering, and express the enormous difficulties in handling change in patients. These findings provide information on the direction in which efforts for improving intervention should be directed.
Resumo:
The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.
Resumo:
Background: The integrated treatment of first episode psychosis has been shown to improve functionality and negative symptoms in previous studies. In this paper, we describe a study of integrated treatment (individual psychoeducation complementary to pharmacotherapy) versus treatment as usual, comparing results at baseline with those at 6-month re-assessment (at the end of the study) for these patients, and online training of professionals to provide this complementary treatment, with the following objectives: 1) to compare the efficacy of individual psychoeducation as add-on treatment versus treatment as usual in improving psychotic and mood symptoms; 2) to compare adherence to medication, functioning, insight, social response, quality of life, and brain-derived neurotrophic factor, between both groups; and 3) to analyse the efficacy of online training of psychotherapists. Methods/design: This is a single-blind randomised clinical trial including patients with first episode psychosis from hospitals across Spain, randomly assigned to either a control group with pharmacotherapy and regular sessions with their psychiatrist (treatment as usual) or an intervention group with integrated care including treatment as usual plus a psychoeducational intervention (14 sessions). Training for professionals involved at each participating centre was provided by the coordinating centre (University Hospital of Alava) through video conferences. Patients are evaluated with an extensive battery of tests assessing clinical and sociodemographic characteristics (Positive and Negative Syndrome Scale, State-Trait Anxiety Inventory, Liebowitz Social Anxiety Scale, Hamilton Rating Scale for Depression, Scale to Assess Unawareness of Mental Disorders, Strauss and Carpenter Prognostic Scale, Global Assessment of Functioning Scale, Morisky Green Adherence Scale, Functioning Assessment Short Test, World Health Organization Quality of Life instrument WHOQOL-BREF (an abbreviated version of the WHOQOL-100), and EuroQoL questionnaire), and brain-derived neurotrophic factor levels are measured in peripheral blood at baseline and at 6 months. The statistical analysis, including bivariate analysis, linear and logistic regression models, will be performed using SPSS. Discussion: This is an innovative study that includes the assessment of an integrated intervention for patients with first episode psychosis provided by professionals who are trained online, potentially making it possible to offer the intervention to more patients.
Resumo:
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Resumo:
In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzers in industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed