5 resultados para Conservation projects (Natural resources)
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
4 p.
Resumo:
The aim of this paper is to analyze how active R&D policies affect the growth rate of an economy with endogenous growth and non-renewable resources. We know from Scholz and Ziemens (1999) and Groth (2006) that in infinitely lived agents (ILA) economies, any active R&D policy increases the growth rate of the economy. To see if this result also appears in economies with finite lifetime agents, we developed an endogenous growth overlapping generations (OLG) economy à la Diamond which uses non-renewable resources as essential inputs in final good’s production. We show analytically that any R&D policy that reduces the use of natural resources implies a raise in the growth rate of the economy. Numerically we show that in economies with low intertemporal elasticity of substitution (IES), active R&D policies lead the economy to increase the depletion of non-renewable resources. Nevertheless, we find that active R&D policies always imply increases in the endogenous growth rate, in both scenarios. Furthermore, when the IES coefficient is lower (greater) than one, active R&D policies affect the growth rate of the economy in the ILA more (less) than in OLG economies.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.