3 resultados para Computer-Human Interaction (080602)

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]Ikasnabar es una conferencia para hablar de tendencias en educación, sobre las nuevas tecnologías en el ámbito educativo y conocer personas que están generando buenas ideas y prácticas en su quehacer diario. Este libro intenta recoger todo ello con las contribuciones de autores noveles y de renombre que buscan la excelencia en los procesos de enseñanza-aprendizaje. Tres tendencias importantes de aprendizaje se están expandiendo. Microcontenidos, aprendizaje móvil y MOOCs son la cara de una misma moneda: microaprendizaje con contenido rico, abierto y desmenuzado. A medida que el consumo de Internet desde dispositivos móviles aumenta, el aprendizaje móvil con tecnologías como HTML5, software para MOOC, plataformas de contenidos de vídeo, etc., están siendo algunas de las claves de la nueva revolución en el ámbito educativo. El microcontenido hace referencia a los pequeños trozos de información digital en un estado permanente de flujo y circulación. Es a menudo un único tema, limitado en longitud, que se consume rápidamente y con frecuencia limitado por el software o por el dispositivo. Se trata de la puesta en común de recursos. Se basa en la interacción humano-a-humano con los medios de comunicación de Internet. El otro tema central de esta conferencia es el de los MOOC realizados por los profesores que quieren tomar ventaja en el comienzo de esta nueva era de la educación abierta con calidad. MOOCs son, básicamente, cursos abiertos y es necesario recordar los puntos esenciales de este tipo de instrucción. Los miniMOOCs son alternativas con menos horas en el proceso de aprendizaje. Hoy en día, un buen MOOC podrá ser la mejor tarjeta de presentación para profesores, expertos y estudiantes. Vivimos en tiempos de cambio con ámbitos en los que se mezcla el aprendizaje formal e informal, y las universidades y colegios deberíamos estar atentos a esto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past few years, human facial age estimation has drawn a lot of attention in the computer vision and pattern recognition communities because of its important applications in age-based image retrieval, security control and surveillance, biomet- rics, human-computer interaction (HCI) and social robotics. In connection with these investigations, estimating the age of a person from the numerical analysis of his/her face image is a relatively new topic. Also, in problems such as Image Classification the Deep Neural Networks have given the best results in some areas including age estimation. In this work we use three hand-crafted features as well as five deep features that can be obtained from pre-trained deep convolutional neural networks. We do a comparative study of the obtained age estimation results with these features.