5 resultados para Bay Area Rapid Transit System.
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Electrical Bus Rapid Transit (eBRT) is a charging electrical public transport which brings a clean, high performance, and affordable cost alternative from the conventional traffic vehicles which work with combustion and hybrid technology. These buses charge the battery in every bus stop to arrive at the next station. But, this charging system needs an appropriate infrastructure called pantograph, and it requires a high precision bus location to maintain battery lifetime, energy saving and charging time. To overcome this issue Vicomtech and Datik has planned a project based on computer vision to help to the driver to locate the vehicle in the correct place. In this document, we present a mono camera bus driver guided fast algorithm because these vehicles embedded computers do not support high computation and precision operations. In addition to the frequent lane sign, there are more accurate geometric beacons painted on the road to bring metric information to the vision system. This method uses segmentation to binarize the image discriminating the background space. Besides it detects, tracks and counts different lane mark contours in addition to classify each special painted mark. Besides it does not need any calibration task to calculate longitudinal and cross distances because we know the lane mark sizes.
Resumo:
The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.
Resumo:
Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.
Resumo:
222 p. : il.
Resumo:
185 p.