4 resultados para Automatic detection
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
ES]El proyecto descrito en este documento consiste en la investigación sobre la viabilidad de detección automática de pulso y respiración a partir de la señal de aceleración, medida mediante un acelerómetro posicionado bien en la carótida o en el pecho del paciente. El motivo de la utilización de la aceleración está principalmente en el bajo costo y por la tecnología sencilla de los acelerómetros. En este documento se explica cómo se ha montado una plataforma para la adquisición de las señales de aceleración y el electrocardiograma emitido por el corazón, en sujetos sanos. Con la base de señales adquirida se ha diseñado un método basado en el dominio de la frecuencia para detectar la presencia de pulso y respiración. Los resultados son prometedores y confirman la posibilidad de desarrollar estos detectores. Las herramientas desarrolladas podrán ser utilizadas para análisis futuros y para seguir avanzando en este estudio.
Resumo:
[EU]Hizkuntzaren prozesamenduan testu koherenteetan kausa taldeko erlazioak (KAUSA, ONDORIOA eta HELBURUA) automatikoki hautematea eta bereiztea erabilgarria da galdera-erantzun automatikoko sistemak eraikitzerako orduan. Horretarako Egitura Erretorikoaren Teoria (Rhetorical Structure Theory, aurrerantzean RST) eta bere erlazioak erabiliko ditugu, corpus bezala RST Treebank -a (Iruskieta et al., 2013) hartuta, zientziako laburpen-testuz osatutako corpusa, hain zuzen ere. Corpus hori XML formatuan deskargatu eta hortik XPATH tresnaren bidez informazio garrantzitsuena eskuratzen dugu. Lan honek 3 helburu nagusi ditu: lehendabizi, kausa taldeko erlazioak elkarren artean bereiztea, bigarrenez, kausa taldeko erlazio hauek beste erlazio guztiekin bereiztea, eta azkenik, EBALUAZIOA eta INTERPRETAZIOA erlazioak bereiztea sentimendu analisian aplikatu ahal izateko. Ataza horiek egiteko, RhetDB tresnarekin eskuratu diren patroi ensaguratsuenak erabili eta bi aplikazio garatu ditugu. Alde batetik, bilatu nahi ditugun patroiak adierazi eta erlazio-egitura duen edonolako testuetan bilaketak egiten dituen bilatzailea, eta bestetik, patroi esanguratsuenak emanda erlazioak etiketatzen dituen etiketatzailea. Bi aplikazio hauek gainera, ahalik eta modu parametrizagarrienean erabiltzeko garatu ditugu, kodea aldatu gabe edonork erabili ahal izateko antzeko atazak egiteko. Etiketatzaileak ebaluatu ondoren, identifikatzeko erlaziorik errazena HELBURUA erlazioa dela ikusi dugu eta KAUSA eta ONDORIOA bereizteko arazo gehiago dauzkagula ere ondorioztatu dugu. Modu berean, EBALUAZIOA eta INTERPRETAZIOA ere elkarren artean bereiz dezakegula ikusi dugu.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conference(a). The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshops(b), which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.