13 resultados para Author number

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is to analyse the influence of different large-sided games (LSGs) on the physical and physiological variables in under-12s (U12) and -13s (U13) soccer players. The effects of the combination of different number of players per team, 7, 9, and 11 (P7, P9, and P11, respectively) with three relative pitch areas, 100, 200, and 300 m(2) (A100, A200, and A300, respectively), were analysed in this study. The variables analysed were: 1) global indicator such as total distance (TD); work:rest ratio (W:R); player-load (PL) and maximal speed (V-max); 2) heart rate (HR) mean and time spent in different intensity zones of HR (<75%, 75-84%, 84-90% and >90%), and; 3) five absolute (<8, 8-13, 13-16 and >16 Km h(-1)) and three relative speed categories (<40%, 40-60% and >60% V-max). The results support the theory that a change in format (player number and pitch dimensions) affects no similarly in the two players categories. Although it can seem that U13 players are more demanded in this kind of LSG, when the work load is assessed from a relative point of view, great pitch dimensions and/or high number of player per team are involved in the training task to the U12 players. The results of this study could alert to the coaches to avoid some types of LSGs for the U12 players such as:P11 played in A100, A200 or A300, P9 played in A200 or A300 and P7 played in A300 due to that U13>U12 in several physical and physiological variables (W:R, time spent in 84-90% HRmax, distance in 8-13 and 13-16 Km h(-1) and time spent in 40-60% V-max). These results may help youth soccer coaches to plan the progressive introduction of LSGs so that task demands are adapted to the physiological and physical development of participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Few studies have analyzed predictors of length of stay (LOS) in patients admitted due to acute bipolar manic episodes. The purpose of the present study was to estimate LOS and to determine the potential sociodemographic and clinical risk factors associated with a longer hospitalization. Such information could be useful to identify those patients at high risk for long LOS and to allocate them to special treatments, with the aim of optimizing their hospital management. Methods: This was a cross-sectional study recruiting adult patients with a diagnosis of bipolar disorder (Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) criteria) who had been hospitalized due to an acute manic episode with a Young Mania Rating Scale total score greater than 20. Bivariate correlational and multiple linear regression analyses were performed to identify independent predictors of LOS. Results: A total of 235 patients from 44 centers were included in the study. The only factors that were significantly associated to LOS in the regression model were the number of previous episodes and the Montgomery-Åsberg Depression Rating Scale (MADRS) total score at admission (P < 0.05). Conclusions: Patients with a high number of previous episodes and those with depressive symptoms during mania are more likely to stay longer in hospital. Patients with severe depressive symptoms may have a more severe or treatment-resistant course of the acute bipolar manic episode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 26107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sets out an optimum synthesis methodology for wheel profiles of railway vehicles in order to secure good dynamic behaviour with different track configurations. Specifically, the optimisation process has been applied to the case of rail wheelsets mounted on double gauge bogies, that move over two different gauges, which also have different types of rail: the Iberian gauge (1668 mm) and the UIC gauge (1435 mm). Optimisation is performed using Genetic Algorithms and traditional optimisation methods in a complementary way. The objective function used is based on an ideal equivalent conicity curve which ensures good stability on straight sections and also proper negotiation of curves. To this end the curve is constructed in such a way that it is constant with a low value for small lateral wheelset displacements (with regard to stability), and increases as the displacements increase (to facilitate negotiation of curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be secured where the contact points have a larger distribution over the active contact areas, making wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that is closer to the target conicity for both gauges studied, producing better curve negotiation while maintaining good stability on straight sections of track. The paper shows the resultant wheel profile, the contact curves it produces, and a number of dynamic analyses demonstrating better dynamic behaviour of the synthesised wheel on curved sections with respect to the original wheel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer’s disease (AD) induced by a combination of toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of cerebral senile plaques composed of amyloid beta peptide (A beta) is a fundamental feature of Alzheimer's disease (AD). Glial cells and more specifically microglia become reactive in the presence of A beta. In a triple transgenic model of AD (3 x Tg-AD), we found a significant increase in activated microglia at 12 (by 111%) and 18 (by 88%) months of age when compared with non-transgenic (non-Tg) controls. This microglial activation correlated with A beta plaque formation, and the activation in microglia was closely associated with A beta plaques and smaller A beta deposits. We also found a significant increase in the area density of resting microglia in 3 x Tg-AD animals both at plaque-free stage (at 9 months by 105%) and after the development of A plaques (at 12 months by 54% and at 18 months by 131%). Our results show for the first time that the increase in the density of resting microglia precedes both plaque formation and activation of microglia by extracellular A beta accumulation. We suggest that AD pathology triggers a complex microglial reaction: at the initial stages of the disease the number of resting microglia increases, as if in preparation for the ensuing activation in an attempt to fight the extracellular A beta load that is characteristic of the terminal stages of the disease. Cell Death and Disease (2010) 1, e1; doi:10.1038/cddis.2009.2; published online 14 January 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of -structure and decreased that of -helix. Partial phosphorylation increased the amount of undefined structure and decreased that of -helix without a significant increase in -structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge.