12 resultados para ANTHROPOGENIC DISTURBANCES AND FOREST RESTORATION
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
283 p. : graf., map.
Resumo:
25 p.
Resumo:
52 p.
Resumo:
[EN] The concept of sustainability when referring to food production rests, in general, on 3 main aspects: 1) respect for the environment; 2) economic and social benefits for all involved in production; and 3) production of sufficient quantity of quality food at an accessible price. In this contribution we focus on the main aspects of the traditional sheep's milk and cheese production (under the Denomination of Origin Idiazabal Cheese) in the Basque Country that contribute primarily to its sustainability. It is based on the local latxa or carranzana breeds of sheep, adapted to the mountainous terrain. The sheepherder takes advantage of local resources to reduce management costs by combining indoor dry forage and concentrates with outdoor grazing throughout lactation, according to local pasture availability, and thus avoiding having to buy large amounts of feed. This system facilitates recycling of manure, fertilising pastures and forest at the same time. Use of local breeds helps maintain biodiversity of sheep breeds. Cheese is produced industrially (44.5% of the total cheese produced in 2008) from milk of many flocks, or artisanally (38.3%) by the sheepherders with the milk from their own flocks. Transforming their own milk into cheese is advantageous for the following reasons: 1) higher economic returns as compared to selling the milk to cheese factories because cheese price directly sold to consumers is more competitive than industrial cheese sold in supermarkets; 2) increases the value of women's work (over 80% of the cheese makers are women) in the community and their self-esteem; 3) it creates rural jobs and contributes to rural development; 4) we have demonstrated both with experimental and commercial flocks that part-time grazing allows the sheepherder to obtain high yields of milk, and cheese, of high nutritional and functional quality. Currently a less sustainable, intensive sheep's milk production with foreign, imported breeds kept indoors constantly is gaining favour among milk producers because of its perceived higher economic profitability.
Resumo:
421 p. (Bibliogr.: 375-421
Resumo:
The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a sliding mode control for variable speed wind turbine that incorporates a doubly fed induction generator is described. The electrical system incorporates a wound rotor induction machine with back-to-back three phase power converter bridges between its rotor and the grid. In the presented design the so-called vector control theory is applied, in order to simplify the electrical equations. The proposed control scheme uses stator flux-oriented vector control for the rotor side converter bridge control and grid voltage vector control for the grid side converter bridge control. The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand, that the proposed controller provides high-performance dynamic characteristics, and on the other hand, that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11
Resumo:
POWERENG 2011
Resumo:
EFTA 2009
Resumo:
EuroPES 2009
Resumo:
27 p.
Resumo:
In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.