64 resultados para García, Josefa María , O.F.M.Cap.-Biografies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EFTA 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ICEM 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2nd International Conference on Education and New Learning Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EuroPES 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(EuroPES 2009)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EuroPES 2009