18 resultados para nonparametric inference
Resumo:
[ES] Se propone en este trabajo un modelo de control borroso que ayude a filtrar y seleccionar las solicitudes de subvención que pueda recibir una institución pública en un programa de fomento para la creación y desarrollo de nuevas iniciativas empresariales. Creemos que la utilización de la lógica borrosa presenta ventajas sobre los procedimientos ordinarios ya que nos movemos en un escenario de actuación complejo y vago. El control borroso introduce el conocimiento de los expertos de un modo muy natural mediante variables lingüísticas y procesos de inferencia propios del lenguaje ordinario, lo que facilita la toma de decisiones en situaciones complejas. Nuestro modelo considera por un lado la idea empresarial y por otro la persona . Los indicadores y criterios que los expertos consideran relevantes para la evaluación de la subvención son modelados mediante variables lingüísticas y tratados como antecedentes y consecuentes de un motor de inferencia borroso, cuya salida nos proporciona la valoración final de la solicitud. Al final de nuestro trabajo resolvemos un caso práctico sencillo para aclarar el procedimiento.
Resumo:
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements.
Resumo:
In this work we show the results obtained applying a Unified Dark Matter (UDM) model with a fast transition to a set of cosmological data. Two different functions to model the transition are tested, and the feasibility of both models is explored using CMB shift data from Planck [1], Galaxy Clustering data from [2] and [3], and Union2.1 SNe Ia [4]. These new models are also statistically compared with the ACDM and quiessence models using Bayes factor through evidence. Bayesian inference does not discard the UDM models in favor of ACDM.