26 resultados para machine translation programs
Resumo:
Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)
Resumo:
Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)
Resumo:
Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)
Resumo:
Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)
Resumo:
Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)
Resumo:
Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)
Resumo:
Raquel Merino Álvarez, José Miguel Santamaría, Eterio Pajares (eds.)
Resumo:
More and more users aim at taking advantage of the existing Linked Open Data environment to formulate a query over a dataset and to then try to process the same query over different datasets, one after another, in order to obtain a broader set of answers. However, the heterogeneity of vocabularies used in the datasets on the one side, and the fact that the number of alignments among those datasets is scarce on the other, makes that querying task difficult for them. Considering this scenario we present in this paper a proposal that allows on demand translations of queries formulated over an original dataset, into queries expressed using the vocabulary of a targeted dataset. Our approach relieves users from knowing the vocabulary used in the targeted datasets and even more it considers situations where alignments do not exist or they are not suitable for the formulated query. Therefore, in order to favour the possibility of getting answers, sometimes there is no guarantee of obtaining a semantically equivalent translation. The core component of our proposal is a query rewriting model that considers a set of transformation rules devised from a pragmatic point of view. The feasibility of our scheme has been validated with queries defined in well known benchmarks and SPARQL endpoint logs, as the obtained results confirm.
Resumo:
In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic programs based on first- and second-order stochastic dominance constraints induced by mixed-integer linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-artMIP solver is also reported.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
[ES]Las compañías líderes del mundo textil compiten cada día por ser las número 1 en cuanto a ventas se refiere. Para ello, son necesarias diferentes estrategias de venta. Una de ellas es la adición de diferentes adornos de plástico que hacen que el comprador se fije en sus productos. Por otro lado, las tecnologías de mecanizado están en pleno avance y la fabricación de piezas o moldes es cada vez más eficiente. Por eso en este trabajo se quiere analizar y estudiar la fabricación de un molde de inyección de plástico con el logotipo de una de las marcas más famosas en el mundo, Adidas. Se ha de llevar a cabo un estudio de los posibles materiales a utilizar para el molde, así como, las distintas alternativas de mecanizado que hoy en día se emplean para este tipo de procesos. Además, los avances en los distintos programas CAD/CAM son de especial ayuda para este tipo de trabajos. Estos programas son capaces de trazar las trayectorias más eficientes a la hora de mecanizar distintos tipos de piezas y postprocesar la programación de dichas trayectorias para luego ser introducidas en los centros CNC.