20 resultados para linked open data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques-Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description-using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-beta 3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical comparison method to detect possible anisotropic features. Unlike some previous works where nondiagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of previously claimed detections of a preferred direction in the Union2 dataset completely disappears once we include the effects of using the full covariance matrix. Moreover, we also find that such apreferred direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, after removal of the highest in homogeneous sub-samples, the number of SNIa is too low. Finally, we take advantage of the particular distribution of SNLS SNIa sub- sample in the SNLS3 data set, in which the observations were taken along four different directions. We fit each direction independently and find consistent results at the 1 sigma level. Although the likelihoods peak at relatively different values of Omega(m), the low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently broad as to overlap within 1 sigma. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons. org/licenses/by/4.0/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Little is known about how sitting time, alone or in combination with markers of physical activity (PA), influences mental well-being and work productivity. Given the need to develop workplace PA interventions that target employees' health related efficiency outcomes; this study examined the associations between self-reported sitting time, PA, mental well-being and work productivity in office employees. Methods: Descriptive cross-sectional study. Spanish university office employees (n = 557) completed a survey measuring socio-demographics, total and domain specific (work and travel) self-reported sitting time, PA (International Physical Activity Questionnaire short version), mental well-being (Warwick-Edinburg Mental Well-Being Scale) and work productivity (Work Limitations Questionnaire). Multivariate linear regression analyses determined associations between the main variables adjusted for gender, age, body mass index and occupation. PA levels (low, moderate and high) were introduced into the model to examine interactive associations. Results: Higher volumes of PA were related to higher mental well-being, work productivity and spending less time sitting at work, throughout the working day and travelling during the week, including the weekends (p < 0.05). Greater levels of sitting during weekends was associated with lower mental well-being (p < 0.05). Similarly, more sitting while travelling at weekends was linked to lower work productivity (p < 0.05). In highly active employees, higher sitting times on work days and occupational sitting were associated with decreased mental well-being (p < 0.05). Higher sitting times while travelling on weekend days was also linked to lower work productivity in the highly active (p < 0.05). No significant associations were observed in low active employees. Conclusions: Employees' PA levels exerts different influences on the associations between sitting time, mental well-being and work productivity. The specific associations and the broad sweep of evidence in the current study suggest that workplace PA strategies to improve the mental well-being and productivity of all employees should focus on reducing sitting time alongside efforts to increase PA.