18 resultados para Population Balance
Resumo:
Objective: Although dobutamine is widely used in neonatal clinical practice, the evidence for its use in this specific population is not clear. We conducted a systematic review of the use of dobutamine in juvenile animals to determine whether the evidence from juvenile animal experiments with dobutamine supported the design of clinical trials in neonatal/ paediatric population. Methods: Studies were identified by searching MEDLINE (1946-2012) and EMBASE (1974-2012). Articles retrieved were independently reviewed by three authors and only those concerning efficacy and safety of the drug in juvenile animals were included. Only original articles published in English and Spanish were included. Results: Following our literature search, 265 articles were retrieved and 24 studies were included in the review: 17 focused on neonatal models and 7 on young animal models. Although the aims and design of these studies, as well as the doses and ages analysed, were quite heterogeneous, the majority of authors agree that dobutamine infusion improves cardiac output in a dose dependent manner. Moreover, the cardiovascular effects of dobutamine are influenced by postnatal age, as well as by the dose used and the duration of the therapy. There is inadequate information about the effects of dobutamine on cerebral perfusion to draw conclusions. Conclusion: There is enough preclinical evidence to ensure that dobutamine improves cardiac output, however to better understand its effects in peripheral organs, such as the brain, more specific and well designed studies are required to provide additional data to support the design of clinical trials in a paediatric population.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.