18 resultados para FIXED-BED COLUMNS
Resumo:
This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems.
Resumo:
Coincidence and common fixed point theorems for a class of 'Ciric-Suzuki hybrid contractions involving a multivalued and two single-valued maps in a metric space are obtained. Some applications including the existence of a common solution for certain class of functional equations arising in a dynamic programming are also discussed..
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.