23 resultados para Calor
Resumo:
129 p.
Resumo:
290 p.
Resumo:
270 p.
Resumo:
398 p. + anexos
Resumo:
[ES]El objetivo principal de este proyecto se centra en conseguir las características mecánicas requeridas por los componentes del chasis de los vehículos con una reducción de peso y mejora de productividad, para ellos es necesario simular el proceso de templado que se da durante la estampación en caliente de una pieza de chapa mediante utillajes con conductos de refrigeración. Para ello se ha utilizado el programa de elementos finitos ANSYS hasta obtener un proceso de embutición simulado que represente con una desviación dentro de los límites aceptables el comportamiento real de la chapa en la etapa de refrigeración. Como objetivo secundario se encuentra el afianzamiento de las bases teóricas de ciencia de materiales y la adquisición de más conocimientos relacionados con la transmisión de calor entre cuerpos sólidos, centrándose sobre todo en la distribución de temperaturas sobre la superficie de éstos. En una primera parte se tratarán los conceptos generales de la estampación en caliente y sus posibles variantes. También se explicará la necesidad del uso de nuevos materiales para la industria automovilística, así como la razón por la cual se utilizan conductos de refrigeración. A continuación, se definirá la geometría de la chapa a analizar, tanto las consecuentes geometrías de los utillajes, que tendrán diferentes distribuciones de conductos de refrigeración. Además se establecerán los criterios para realizar el análisis térmico transitorio del conjunto troquel – chapa – matriz. Una vez seleccionado el tipo de análisis se profundizará en su estudio, aplicándolo a los diferentes utillajes ya citados. Se analizarán los resultados obtenidos y los errores y se buscarán posibles alternativas. Finalmente, se procederá a sacar las conclusiones de la simulación realizada y se procederá a comparar los resultados obtenidos con las diferentes distribuciones de conductos de refrigeración en los utillajes.
Resumo:
[EU]Lan honen helburu nagusia eraikuntzan gehituko diren argi-babeski sistema mota desberdinak aurkeztea da, bertan ematen den energia kontsumoa murrizteko asmoz. Izan ere, argi naturalaren erabilpen egoki batek eraikinaren efizientzia hobetzera eramango gaitu. Horretarako, ezinbestekoa izango da baliabide hau behar bezala ezagutzea, argitasuna eta beharrezko babesa eskaintzeko, eta ondorioz, energia aurreztea lortzeko. Babes sistema egokiena aukeratu baino lehen, aldez aurretik sortu izan diren argi-babeski mota desberdinak aztertu izan dira. Horrez gain, eguzki erradiazioa neurtzeko metodo grafiko eta analitikoak ere aztertu dira. Ondoren, Ecotect programak eskaintzen dituen simulazioei esker, eguzki erradiazioaren datu zehatzagoak lortzeko asmoz, ikasketa horretan erabiliko den eraikinaren kokapena, orientazioa eta ezaugarriak erabaki dira. Behin prototipoa definituta, programa bidez lau babes sistema mota desberdinak aztertu dira, horrela babesik gabeko eraikinean lortutako datuak alderatzeko. Azterketa Bilbo eta Sevillan egitea erabaki izan da. Izan ere, bi hiriburu hauek klimatologian duten desberdintasuna argi-babeskien aukeraketan duen eragina aztertzeko aukeratu dira, gainera, orientazioak eta argi babeskien dimentsioek ere izan dute zer esana aukeraketa garaian. Horrez gain, argi-babeskiek sortutako itzala ere aztertu izan da. Horrela, sistema hauen jarrera orokorra ikusi daiteke, eta beraz, uda garaian babesteko eta negu garaian eguzki izpiak sartzen uzteko duten ahalmena ikusi da. Bukatzeko, aurretik lortutako datu guztiei esker, eta bai kokapena zein orientazioa kontutan hartuz, babes sistema egokiena aukeratu da, jakinik ezinbestekoa dela argitasuna, babesa eta aurrezte energetikoaren arteko oreka egoki bat lortzea.
Resumo:
Este trabajo refleja parte de una ponencia presentada el 27-7-2000 en el marco del curso de arqueología de la Fundación Duques de Soria, dirigido por los profesores G. Ruiz Zapatero y A. Jimeno Martínez.
Resumo:
En este trabajo se estudia el comportamiento de una lámina de fluido limitada por dos superficies. La temperatura de la superficie inferior es mayor que la de la placa superior. Para pequeños gradientes de temperatura la conducción de calor será suficiente para disipar el calor. Sin embargo, la convección de Bénard, es decir, el movimiento macroscópico de las partículas del fluido, comienza cuando la conducción no es capaz por sí sola de disipar todo el calor debido a un mayor gradiente de temperatura. La consecuencia más notable de la convección es la formación de las llamadas celdas de Bénard. Como se va a demostrar estas solo pueden adoptar determinadas formas geométricas. De hecho, solo pueden ser polígonos regulares y solo serán visibles cuando la diferencia térmica entre las superficies no sea excesivamente grande y el flujo no sea turbulento. Una característica importante de este tipo de sistemas es que las ecuaciones que las rigen no son lineales, y, por tanto, aparece el fenómeno del caos determinista.