22 resultados para Bulbar Muscular-atrophy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo se encuentra bajo la licencia Creative Commons Attribution 3.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día y con el objetivo de conseguir el mayor rendimiento posible en la mayoría de los deportes profesionales, la suplementación deportiva está adquiriendo un protagonismo vital, siendo conscientes de que la suplementación deportiva por sí sola no sea el principal factor responsable del aumento del rendimiento deportivo. Sin embargo, ha quedado demostrado que estos suplementos pueden ayudar a dar el salto de calidad en deportistas profesionales y últimamente salen a la luz investigaciones de nuevos suplementos que empiezan a ser habituales en algunos deportistas, como es el caso de la Beta-Alanina. El principal efecto de la ingesta exógena de b-alanina en el organismo radica en el aumento de la carnosina muscular debido a su rol como factor limitante en la síntesis de la misma, un dipéptido citoplasmático que tiene la capacidad de secuestrar los protones inducidos por el ejercicio de alta intensidad, retrasando la disminución del pH intramuscular y en consecuencia, retrasando la fatiga. La mayoría de los estudios hasta el momento que han investigado el efecto de la b-alanina y el rendimiento deportivo se centran en los deportes cíclicos, especialmente en aquellos deportes anaeróbicos donde la disminución del pH es limitante del rendimiento deportivo. Por ello, mediante una revisión bibliográfica el objetivo de este artículo será identificar y resumir los efectos principales de la suplementación exógena de Beta-alanina relacionados con el aumento del rendimiento deportivo y complementariamente, se realizar también un análisis sobre los factores fisiológicos del fútbol con el fin de conocer si este suplemento podría aumentar el rendimiento en los futbolistas de alto nivel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new species of Lumbriculidae were collected from floodplain seeps and small streams in southeastern North America. Some of these habitats are naturally acidic. Sylphella puccoon gen. n., sp. n. has prosoporous male ducts in X-XI, and spermathecae in XII-XIII. Muscular, spherical atrial ampullae and acuminate penial sheaths distinguish this monotypic new genus from other lumbriculid genera having similar arrangements of reproductive organs. Cookidrilus pocosinus sp. n. resembles its two subterranean, Palearctic congeners in the arrangement of reproductive organs, but is easily distinguished by the position of the spermathecal pores in front of the chaetae in X-XIII. Stylodrilus coreyi sp. n. differs from congeners having simple-pointed chaetae and elongate atria primarily by the structure of the male duct and the large clusters of prostate cells. Streams and wetlands of Southeastern USA have a remarkably high diversity of endemic lumbriculids, and these poorly-known invertebrates should be considered in conservation efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the normalized response speed (Vrn) of the knee musculature (flexor and extensor) in high competitive level volleyball players using tensiomyography (TMG) and to analyze the muscular response of the vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), and biceps femoris (BF) in accordance with the specific position they play in their teams. One hundred and sixty-six players (83 women and 83 men) were evaluated. They belonged to eight teams in the Spanish women's superleague and eight in the Spanish men's superleague. The use of Vrn allows avoiding possible sample imbalances due to anatomical and functional differences and demands. We found differences between Vrn in each of the muscles responsible for extension (VM, RF, and VL) and flexion (BF) regardless of the sex. Normalized response speed differences seem to be larger in setters, liberos and outside players compared to middle blockers and larger in males when compared to females. These results of Vrn might respond to the differences in the physical and technical demands of each specific position, showing an improved balance response of the knee extensor and flexor musculature in male professional volleyball players.