3 resultados para web communicationSEOweb localizationpinacoteca di breramuseum studiesmuseum communication

em Universita di Parma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La ricerca ha scelto di affrontare una serie di problemi connessi alla valorizzazione e alla conservazione del materiale pubblicitario rispetto a un caso studio selezionato, l’archivio dell’Art Directors Club Italiano conservato presso il Centro Studi e Archivio della Comunicazione dell’Università di Parma. Questo archivio è costituito principalmente da materiali della comunicazione pubblicitaria - suddivisi in categorie corrispondenti a media e tecniche - iscritti dal 1998 al 2003 agli ADCI Awards, il premio italiano di riferimento dedicato alla pubblicità e organizzato dall’Art Directors Club Italiano - ADCI a partire dall’anno della sua fondazione, il 1985. La sua storia è quindi connessa strettamente con quella dell’associazione, che rappresenta e riunisce professionisti della pubblicità che condividono obiettivi comuni, e in particolare il riconoscimento e la valorizzazione della creatività come elemento fondante della comunicazione d’impresa e istituzionale. Lo CSAC in parallelo, il contesto archivistico all’interno del quale questi fondi sono venuti a trovarsi in seguito alla donazione da parte dell’ADCI nel 2002-2003, è un centro di ricerca dell’Università di Parma dedicato alla conservazione e allo studio di archivi provenienti da diversi ambiti culturali. A partire da una mappatura dell’archivio e dalla ricostruzione di contesti e dibattiti fondamentali per studiare e organizzare i fondi, questa tesi si propone di individuare, in particolare attraverso gli strumenti digitali, possibili modalità di analisi, esposizione e accesso ai materiali, che possano aprire una rete di connessioni verso altri ambiti di ricerca e nuove prospettive in funzione delle storie della pubblicità.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) consists of a worldwide “network of networks,” composed by billions of interconnected heterogeneous devices denoted as things or “Smart Objects” (SOs). Significant research efforts have been dedicated to port the experience gained in the design of the Internet to the IoT, with the goal of maximizing interoperability, using the Internet Protocol (IP) and designing specific protocols like the Constrained Application Protocol (CoAP), which have been widely accepted as drivers for the effective evolution of the IoT. This first wave of standardization can be considered successfully concluded and we can assume that communication with and between SOs is no longer an issue. At this time, to favor the widespread adoption of the IoT, it is crucial to provide mechanisms that facilitate IoT data management and the development of services enabling a real interaction with things. Several reference IoT scenarios have real-time or predictable latency requirements, dealing with billions of device collecting and sending an enormous quantity of data. These features create a new need for architectures specifically designed to handle this scenario, hear denoted as “Big Stream”. In this thesis a new Big Stream Listener-based Graph architecture is proposed. Another important step, is to build more applications around the Web model, bringing about the Web of Things (WoT). As several IoT testbeds have been focused on evaluating lower-layer communication aspects, this thesis proposes a new WoT Testbed aiming at allowing developers to work with a high level of abstraction, without worrying about low-level details. Finally, an innovative SOs-driven User Interface (UI) generation paradigm for mobile applications in heterogeneous IoT networks is proposed, to simplify interactions between users and things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.