2 resultados para spectroscopic analysis

em Universita di Parma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GabR è un fattore di trascrizione chimerico appartenente alla famiglia dei MocR/GabR, costituito da un dominio N-terminale elica-giro-elica di legame al DNA e un dominio effettore e/o di oligomerizzazione al C-terminale. I due domini sono connessi da un linker flessibile di 29 aminoacidi. Il dominio C-terminale è strutturalmente omologo agli enzimi aminotransferasici fold-type I, i quali, utilizzando il piridossal-5’-fosfato (PLP) come cofattore, sono direttamente coinvolti nel metabolismo degli aminoacidi. L’interazione contemporanea di PLP e acido γ-aminobutirrico (GABA) a GabR fa sì che questa promuova la trascrizione di due geni, gabT e gabD, implicati nel metabolismo del GABA. GabR cristallizza come un omodimero con una configurazione testa-coda. Il legame con la regione promotrice gabTD avviene attraverso il riconoscimento specifico di due sequenze dirette e ripetute (ATACCA), separate da uno spacer di 34 bp. In questo studio sono state indagate le proprietà biochimiche, strutturali e di legame al DNA della proteina GabR di Bacillus subtilis. L’analisi spettroscopica dimostra che GabR interagisce con il PLP formando l’aldimina interna, mentre in presenza di GABA si ottiene l’aldimina esterna. L’interazione fra il promotore gabTD e le forme holo e apo di GabR è stata monitorata mediante Microscopia a Forza atomica (AFM). In queste due condizioni di legame è stata stimata una Kd di circa 40 ηM. La presenza di GABA invece, determinava un incremento di circa due volte della Kd, variazioni strutturali nei complessi GabR-DNA e una riduzione del compattamento del DNA alla proteina, indipendentemente dalla sequenza del promotore in esame. Al fine di valutare il ruolo delle caratteristiche topologiche del promotore, sono state inserite cinque e dieci bp all’interno della regione spacer che separa le due sequenze ripetute dirette riconosciute da GabR. I significativi cambiamenti topologici riscontrati nel frammento aggiunto di cinque bp si riflettono anche sulla forte riduzione dell’affinità di legame verso la proteina. Al contrario, l’inserzione di 10 bp provoca solamente l’allontanamento delle sequenze ripetute dirette. L’assenza quindi di cambiamenti significativi nella topologia di questo promotore fa sì che l’affinità di legame per GabR rimanga pressoché inalterata rispetto al promotore non mutato. L’analisi del potenziale elettrostatico superficiale di GabR mostra la presenza di una fascia carica positivamente che si estende lungo un’intera faccia della proteina. Per verificare l’importanza di questa caratteristica di GabR nel meccanismo di interazione al DNA, sono stati preparati ed indagati i mutanti R129Q e K362-366Q, in cui la carica positiva superficiale risultava indebolita. L’affinità di legame dei mutanti di GabR per il DNA era inferiore rispetto alla proteina non mutata, in particolar modo nel mutante K362-366Q. Le evidenze acquisite suggeriscono che la curvatura intrinseca del promotore ed il corretto orientamento delle sequenze sulla doppia elica, più della distanza che le separa, siano critici per sostenere l’interazione con GabR. Oltre a questo, la superficie positiva di GabR è richiesta per accomodare la curvatura del DNA sul corpo della proteina. Alla luce di questo, l’interazione GabR-gabTD è un esempio di come il riconoscimento specifico di sequenze, la topologia del DNA e le caratteristiche strutturali della proteina siano contemporaneamente necessarie per sostenere un’interazione proteina-DNA stabile.